Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 616(7958): 696-701, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046087

RESUMO

Strong light fields have created opportunities to tailor novel functionalities of solids1-5. Floquet-Bloch states can form under periodic driving of electrons and enable exotic quantum phases6-15. On subcycle timescales, lightwaves can simultaneously drive intraband currents16-29 and interband transitions18,19,30,31, which enable high-harmonic generation16,18,19,21,22,25,28-30 and pave the way towards ultrafast electronics. Yet, the interplay of intraband and interband excitations and their relation to Floquet physics have been key open questions as dynamical aspects of Floquet states have remained elusive. Here we provide this link by visualizing the ultrafast build-up of Floquet-Bloch bands with time-resolved and angle-resolved photoemission spectroscopy. We drive surface states on a topological insulator32,33 with mid-infrared fields-strong enough for high-harmonic generation-and directly monitor the transient band structure with subcycle time resolution. Starting with strong intraband currents, we observe how Floquet sidebands emerge within a single optical cycle; intraband acceleration simultaneously proceeds in multiple sidebands until high-energy electrons scatter into bulk states and dissipation destroys the Floquet bands. Quantum non-equilibrium calculations explain the simultaneous occurrence of Floquet states with intraband and interband dynamics. Our joint experiment and theory study provides a direct time-domain view of Floquet physics and explores the fundamental frontiers of ultrafast band-structure engineering.

2.
Phys Rev Lett ; 128(2): 026406, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089762

RESUMO

We present a complementary experimental and theoretical investigation of relaxation dynamics in the charge-density-wave (CDW) system TbTe_{3} after ultrafast optical excitation. Using time- and angle-resolved photoemission spectroscopy, we observe an unusual transient modulation of the relaxation rates of excited photocarriers. A detailed analysis of the electron self-energy based on a nonequilibrium Green's function formalism reveals that the phase space of electron-electron scattering is critically modulated by the photoinduced collective CDW excitation, providing an intuitive microscopic understanding of the observed dynamics and revealing the impact of the electronic band structure on the self-energy.

3.
J Phys Condens Matter ; 33(35)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33951618

RESUMO

In the 60 years since the invention of the laser, the scientific community has developed numerous fields of research based on these bright, coherent light sources, including the areas of imaging, spectroscopy, materials processing and communications. Ultrafast spectroscopy and imaging techniques are at the forefront of research into the light-matter interaction at the shortest times accessible to experiments, ranging from a few attoseconds to nanoseconds. Light pulses provide a crucial probe of the dynamical motion of charges, spins, and atoms on picosecond, femtosecond, and down to attosecond timescales, none of which are accessible even with the fastest electronic devices. Furthermore, strong light pulses can drive materials into unusual phases, with exotic properties. In this roadmap we describe the current state-of-the-art in experimental and theoretical studies of condensed matter using ultrafast probes. In each contribution, the authors also use their extensive knowledge to highlight challenges and predict future trends.

4.
Phys Rev Lett ; 125(13): 137001, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33034466

RESUMO

In triangular lattice structures, spatial anisotropy and frustration can lead to rich equilibrium phase diagrams with regions containing complex, highly entangled states of matter. In this work, we study the driven two-rung triangular Hubbard model and evolve these states out of equilibrium, observing how the interplay between the driving and the initial state unexpectedly shuts down the particle-hole excitation pathway. This restriction, which symmetry arguments fail to predict, dictates the transient dynamics of the system, causing the available particle-hole degrees of freedom to manifest uniform long-range order. We discuss implications of our results for a recent experiment on photoinduced superconductivity in κ-(BEDT-TTF)_{2}Cu[N(CN)_{2}]Br molecules.

5.
Phys Rev Lett ; 123(3): 036405, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31386485

RESUMO

Charge density waves (CDWs) are symmetry-broken ground states that commonly occur in low-dimensional metals due to strong electron-electron and/or electron-phonon coupling. The nonequilibrium carrier distribution established via photodoping with femtosecond laser pulses readily quenches these ground states and induces an ultrafast insulator-to-metal phase transition. To date, CDW melting has been mainly investigated in the single-photon regime with pump photon energies bigger than the gap size. The recent development of strong-field midinfrared sources now enables the investigation of CDW dynamics following subgap excitation. Here we excite prototypical one-dimensional indium wires with a CDW gap of ∼300 meV with midinfrared pulses at ℏω=190 meV with MV/cm field strength and probe the transient electronic structure with time- and angle-resolved photoemission spectroscopy. We find that the CDW gap is filled on a timescale short compared to our temporal resolution of 300 fs and that the band structure changes are completed within ∼1 ps. Supported by a minimal theoretical model we attribute our findings to multiphoton absorption across the CDW gap.

6.
Sci Adv ; 4(11): eaau6969, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30515456

RESUMO

So far, laser control of solids has been mainly discussed in the context of strong classical nonlinear light-matter coupling in a pump-probe framework. Here, we propose a quantum-electrodynamical setting to address the coupling of a low-dimensional quantum material to quantized electromagnetic fields in quantum cavities. Using a protoypical model system describing FeSe/SrTiO3 with electron-phonon long-range forward scattering, we study how the formation of phonon polaritons at the two-dimensional interface of the material modifies effective couplings and superconducting properties in a Migdal-Eliashberg simulation. We find that through highly polarizable dipolar phonons, large cavity-enhanced electron-phonon couplings are possible, but superconductivity is not enhanced for the forward-scattering pairing mechanism due to the interplay between coupling enhancement and mode softening. Our results demonstrate that quantum cavities enable the engineering of fundamental couplings in solids, paving the way for unprecedented control of material properties.

7.
J Chem Theory Comput ; 14(5): 2495-2504, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29660278

RESUMO

The wide-band limit is a commonly used approximation to analyze transport through nanoscale devices. In this work we investigate its applicability to the study of charge and heat transport through molecular break junctions exposed to voltage biases and temperature gradients. We find by comparative simulations that while the wide-band-limit approximation faithfully describes the long-time charge and heat transport, it fails to characterize the short-time behavior of the junction. In particular, we show that the charge current flowing through the device shows a discontinuity when a temperature gradient is applied, while the energy flow is discontinuous when a voltage bias is switched on and even diverges when the junction is exposed to both a temperature gradient and a voltage bias. We provide an explanation for this pathological behavior and propose two possible solutions to this problem.

8.
Phys Rev Lett ; 118(8): 087002, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28282212

RESUMO

We investigate the nonequilibrium dynamics of competing coexisting superconducting (SC) and charge-density wave (CDW) orders in an attractive Hubbard model. A time-periodic laser field A[over →](t) lifts the SC-CDW degeneracy, since the CDW couples linearly to the field (A[over →]), whereas SC couples in second order (A[over →]^{2}) due to gauge invariance. This leads to a striking resonance: When the photon energy is red detuned compared to the equilibrium single-particle energy gap, CDW is enhanced and SC is suppressed, while this behavior is reversed for blue detuning. Both orders oscillate with an emergent slow frequency, which is controlled by the small amplitude of a third induced order, namely η pairing, given by the commutator of the two primary orders. The induced η pairing is shown to control the enhancement and suppression of the dominant orders. Finally, we demonstrate that light-induced superconductivity is possible starting from a predominantly CDW initial state.

9.
Nat Commun ; 7: 13761, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27996009

RESUMO

In complex materials various interactions have important roles in determining electronic properties. Angle-resolved photoelectron spectroscopy (ARPES) is used to study these processes by resolving the complex single-particle self-energy and quantifying how quantum interactions modify bare electronic states. However, ambiguities in the measurement of the real part of the self-energy and an intrinsic inability to disentangle various contributions to the imaginary part of the self-energy can leave the implications of such measurements open to debate. Here we employ a combined theoretical and experimental treatment of femtosecond time-resolved ARPES (tr-ARPES) show how population dynamics measured using tr-ARPES can be used to separate electron-boson interactions from electron-electron interactions. We demonstrate a quantitative analysis of a well-defined electron-boson interaction in the unoccupied spectrum of the cuprate Bi2Sr2CaCu2O8+x characterized by an excited population decay time that maps directly to a discrete component of the equilibrium self-energy not readily isolated by static ARPES experiments.

10.
Nat Commun ; 6: 7047, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25958840

RESUMO

Ultrafast materials science promises optical control of physical properties of solids. Continuous-wave circularly polarized laser driving was predicted to induce a light-matter coupled state with an energy gap and a quantum Hall effect, coined Floquet topological insulator. Whereas the envisioned Floquet topological insulator requires high-frequency pumping to obtain well-separated Floquet bands, a follow-up question regards the creation of Floquet-like states in graphene with realistic low-frequency laser pulses. Here we predict that short optical pulses attainable in experiments can lead to local spectral gaps and novel pseudospin textures in graphene. Pump-probe photoemission spectroscopy can track these states by measuring sizeable energy gaps and Floquet band formation on femtosecond time scales. Analysing band crossings and pseudospin textures near the Dirac points, we identify new states with optically induced nontrivial changes of sublattice mixing that leads to Berry curvature corrections of electrical transport and magnetization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA