Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Heliyon ; 10(2): e24257, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293378

RESUMO

Several studies have been conducted to improve combat vehicle capabilities, such as the bulletproof performance of armor and fuel efficiency through weight reduction. Titanium alloys and ceramic materials are expensive and difficult to process; therefore, they can be applied only in specific locations. In addition, arc welding, which is relatively inexpensive compared with other welding processes, is widely used in industrial fields; however, because welding is often performed in multiple passes to join one part, the productivity is reduced. Therefore, in this study, mechanical properties were investigated according to production time and heat input by applying tandem pulse gas metal arc welding (GMAW) to increase productivity. The experimental data were obtained by varying the wire feeding speed. In addition, the current-voltage waveforms were measured, and the volume shift was analyzed by comparison with images captured using a high-speed camera. To analyze the mechanical properties of the tandem weld for the welding of high-hardness armor plates, the appearance (top bead and back bead), cross-section, hardness, tensile test, impact test, and spatter generation of the welded part were analyzed. The results show that all Tank-automotive and Armaments Command (TACOM) standards for the base material were met when the tandem wire feeding speed was 11 + 11 m/min, and the single-pass process increased production speed by a factor of more than 10. Tandem pulse GMAW is shown to be a viable option for improving productivity and maintaining high-quality welds for high-hardness materials.

2.
Nat Commun ; 14(1): 2202, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072425

RESUMO

The main challenge in preparing a flexible mold stamp using roll-to-roll nanoimprint lithography is to simultaneously increase the imprintable area with a minimized perceptible seam. However, the current methods for stitching multiple small molds to fabricate large-area molds and functional surfaces typically rely on the alignment mark, which inevitably produces a clear alignment mark and stitched seam. In this study, we propose a mark-less alignment by the pattern itself method inspired by moiré technique, which uses the Fourier spectral analysis of moiré patterns formed by superposed identical patterns for alignment. This method is capable of fabricating scalable functional surfaces and imprint molds with quasi-seamless and alignment mark-free patterning. By harnessing the rotational invariance property in the Fourier transform, our approach is confirmed to be a simple and efficient method for extracting the rotational and translational offsets in overlapped periodic or nonperiodic patterns with a minimized stitched region, thereby allowing for the large-area and quasi-seamless fabrication of imprinting molds and functional surfaces, such as liquid-repellent film and micro-optical sheets, that surpass the conventional alignment and stitching limits and potentially expand their application in producing large-area metasurfaces.

3.
Sci Rep ; 12(1): 18637, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329178

RESUMO

Tandem welding is extensively used for welding large structures, such as ships and plants, for increased welding speed and volume. Seam tracking is essential because of a large amount of thermal deformation. However, in tandem welding, arc interference causes current and voltage to vary non-uniformly, leading to difficulties in seam tracking. Therefore, in this study, an optimal signal was identified for seam tracking in tandem welding and evaluated. To select the seam-tracking signal, an algorithm was developed that separates the welding signal into peak, average, and base. Based on the collected data, regression and signal-to-noise ratio analyses were performed to identify a suitable seam-tracking signal. To trace the welding line based on the selected signal, the welding signal was checked by weaving on the V-groove specimen. As a result, the current area difference of the welding signal generated between the left and right parts of the center of the V-groove could be calculated. An algorithm and equipment for seam tracking were constructed using the area difference of the welding current. Finally, the seam tracking system was verified by conducting an actual test using the equipment to which the algorithm was applied.


Assuntos
Soldagem , Ocupações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA