Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3534, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316495

RESUMO

While recent research has shown that holographic displays can represent photorealistic 3D holograms in real time, the difficulty in acquiring high-quality real-world holograms has limited the realization of holographic streaming systems. Incoherent holographic cameras, which record holograms under daylight conditions, are suitable candidates for real-world acquisition, as they prevent the safety issues associated with the use of lasers; however, these cameras are hindered by severe noise due to the optical imperfections of such systems. In this work, we develop a deep learning-based incoherent holographic camera system that can deliver visually enhanced holograms in real time. A neural network filters the noise in the captured holograms, maintaining a complex-valued hologram format throughout the whole process. Enabled by the computational efficiency of the proposed filtering strategy, we demonstrate a holographic streaming system integrating a holographic camera and holographic display, with the aim of developing the ultimate holographic ecosystem of the future.

2.
Med Phys ; 50(2): 791-807, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36273397

RESUMO

BACKGROUND: Diagnostic performance based on x-ray breast imaging is subject to breast density. Although digital breast tomosynthesis (DBT) is reported to outperform conventional mammography in denser breasts, mass detection and malignancy characterization are often considered challenging yet. PURPOSE: As an improved diagnostic solution to the dense breast cases, we propose a dual-energy DBT imaging technique that enables breast compositional imaging at comparable scanning time and patient dose compared to the conventional single-energy DBT. METHODS: The proposed dual-energy DBT acquires projection data by alternating two different energy spectra. Then, we synthesize unmeasured projection data using a deep neural network that exploits the measured projection data and adjacent projection data obtained under the other x-ray energy spectrum. For material decomposition, we estimate partial path lengths of an x-ray through water, lipid, and protein from the measured and the synthesized projection data with the object thickness information. After material decomposition in the projection domain, we reconstruct material-selective DBT images. The deep neural network is trained with the numerical breast phantoms. A pork meat phantom is scanned with a prototype dual-energy DBT system to demonstrate the feasibility of the proposed imaging method. RESULTS: The developed deep neural network successfully synthesized missing projections. Material-selective images reconstructed from the synthesized data present comparable compositional contrast of the cancerous masses compared with those from the fully measured data. CONCLUSIONS: The proposed dual-energy DBT scheme is expected to substantially contribute to enhancing mass malignancy detection accuracy particularly in dense breasts.


Assuntos
Neoplasias da Mama , Mamografia , Humanos , Feminino , Mamografia/métodos , Estudos de Viabilidade , Densidade da Mama , Neoplasias da Mama/diagnóstico por imagem , Redes Neurais de Computação , Imagens de Fantasmas , Intensificação de Imagem Radiográfica
3.
Nat Commun ; 13(1): 6012, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224198

RESUMO

Holography is one of the most prominent approaches to realize true-to-life reconstructions of objects. However, owing to the limited resolution of spatial light modulators compared to static holograms, reconstructed objects exhibit various coherent properties, such as content-dependent defocus blur and interference-induced noise. The coherent properties severely distort depth perception, the core of holographic displays to realize 3D scenes beyond 2D displays. Here, we propose a hologram that imitates defocus blur of incoherent light by engineering diffracted pattern of coherent light with adopting multi-plane holography, thereby offering real world-like defocus blur and photorealistic reconstruction. The proposed hologram is synthesized by optimizing a wave field to reconstruct numerous varifocal images after propagating the corresponding focal distances where the varifocal images are rendered using a physically-based renderer. Moreover, to reduce the computational costs associated with rendering and optimizing, we also demonstrate a network-based synthetic method that requires only an RGB-D image.

4.
Nat Commun ; 13(1): 4155, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851053

RESUMO

An artificial muscle actuator resolves practical engineering problems in compact wearable devices, which are limited to conventional actuators such as electromagnetic actuators. Abstracting the fundamental advantages of an artificial muscle actuator provides a small-scale, high-power actuating system with a sensing capability for developing varifocal augmented reality glasses and naturally fit haptic gloves. Here, we design a shape memory alloy-based lightweight and high-power artificial muscle actuator, the so-called compliant amplified shape memory alloy actuator. Despite its light weight (0.22 g), the actuator has a high power density of 1.7 kW/kg, an actuation strain of 300% under 80 g of external payload. We show how the actuator enables image depth control and an immersive tactile response in the form of augmented reality glasses and two-way communication haptic gloves whose thin form factor and high power density can hardly be achieved by conventional actuators.


Assuntos
Realidade Aumentada , Dispositivos Eletrônicos Vestíveis , Desenho de Equipamento , Músculos , Ligas de Memória da Forma
5.
Sci Rep ; 9(1): 6616, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036828

RESUMO

An augmented reality (AR) near-eye display using Pancharatnam-Berry (PB) phase lenses is proposed. PB phase lenses provide different optical effects depending on the polarization state of the incident light. By exploiting this characteristic, it is possible to manufacture an AR combiner with a small form factor and a large numerical aperture value. The AR combiner adopted in the proposed system operates as a convex lens for right-handed circularly polarized light and operates as transparent glass for left-handed circularly polarized light. By merging this combiner with a transparent screen, such as diffuser-holographic optical elements (DHOEs), it is possible to make an AR near-eye display with a small form factor and a wide field of view. In addition, the proposed AR system compensates the chromatic aberration that occurs in PB phase lens by adopting three-layered DHOEs. The operating principle of the proposed system is covered, and its feasibility is verified with experiments and analysis.

6.
Opt Express ; 22(18): 21460-70, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25321524

RESUMO

The modulation efficiency of the double-phase hologram macro-pixel that is designed for complex modulation of light waves is defined and analyzed. The scale-down of the double-phase hologram macro-pixel associated with the construction of complex spatial light modulators is discussed.

7.
Nat Commun ; 5: 3441, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24603683

RESUMO

Zero-point electromagnetic fields were first introduced to explain the origin of atomic spontaneous emission. Vacuum fluctuations associated with the zero-point energy in cavities are now utilized in quantum devices such as single-photon sources, quantum memories, switches and network nodes. Here we present three-dimensional (3D) imaging of vacuum fluctuations in a high-Q cavity based on the measurement of position-dependent emission of single atoms. Atomic position localization is achieved by using a nanoscale atomic beam aperture scannable in front of the cavity mode. The 3D structure of the cavity vacuum is reconstructed from the cavity output. The root mean squared amplitude of the vacuum field at the antinode is also measured to be 0.92±0.07 V cm(-1). The present work utilizing a single atom as a probe for sub-wavelength imaging demonstrates the utility of nanometre-scale technology in cavity quantum electrodynamics.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Modelos Moleculares , Nanoestruturas/química , Campos Eletromagnéticos , Análise de Fourier , Nanotecnologia/métodos , Compostos de Silício/química , Vácuo
8.
Opt Express ; 17(18): 15455-67, 2009 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-19724543

RESUMO

This paper describes a novel atom-cavity interaction induced by periodically poled atom-cavity coupling constant which leads to multiple narrow photoemission bands for an initially inverted two-level atom under the strong coupling condition. The emission bandpass narrowing has a close analogy with the folded Solc filter in the context of quasi-phase matching by periodic poling. We present a closed form solution of the emission probability at the end of interaction and deduce the multiple phase matching condition for this system which is programmable by the interaction time. The Bloch sphere analysis provides a clear understanding of the underlying atomic dynamics associated with the multiple resonances in the semiclassical limit. Furthermore, we show that this interaction can be applied to generation of nonclassical fields with sub-Poisson photon statistics.

9.
Opt Lett ; 31(21): 3182-4, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17041675

RESUMO

We demonstrate line-shape measurement of an extremely weak amplitude-fluctuating light source by using photon-counting-based second-order correlation spectroscopy combined with the heterodyne technique. The amplitude fluctuation of a finite bandwidth introduces a low-lying spectral structure in the line shape, and thus its effect can be isolated from that of the phase fluctuation. Our technique provides extreme sensitivity suited for single-atom-level applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA