Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Environ Monit Assess ; 196(6): 506, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702588

RESUMO

Industrial cities are hotspots for many hazardous air pollutants (HAPs), which are detrimental to human health. We devised an identification method to determine priority HAP monitoring areas using a comprehensive approach involving monitoring, modeling, and demographics. The methodology to identify the priority HAP monitoring area consists of two parts: (1) mapping the spatial distribution of selected categories relevant to the target pollutant and (2) integrating the distribution maps of various categories and subsequent scoring. The identification method was applied in Ulsan, the largest industrial city in South Korea, to identify priority HAP monitoring areas. Four categories related to HAPs were used in the method: (1) concentrations of HAPs, (2) amount of HAP emissions, (3) the contribution of industrial activities, and (4) population density in the city. This method can be used to select priority HAP monitoring areas for intensive monitoring campaigns, cohort studies, and epidemiological studies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Cidades , Monitoramento Ambiental , Sistemas de Informação Geográfica , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , República da Coreia , Poluição do Ar/estatística & dados numéricos , Indústrias , Humanos , Substâncias Perigosas/análise
2.
Exp Mol Med ; 56(4): 1001-1012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622198

RESUMO

Sterol regulatory element-binding protein (SREBP)-1c is involved in cellular lipid homeostasis and cholesterol biosynthesis and is highly increased in nonalcoholic steatohepatitis (NASH). However, the molecular mechanism by which SREBP-1c regulates hepatic stellate cells (HSCs) activation in NASH animal models and patients have not been fully elucidated. In this study, we examined the role of SREBP-1c in NASH and the regulation of LCN2 gene expression. Wild-type and SREBP-1c knockout (1cKO) mice were fed a high-fat/high-sucrose diet, treated with carbon tetrachloride (CCl4), and subjected to lipocalin-2 (LCN2) overexpression. The role of LCN2 in NASH progression was assessed using mouse primary hepatocytes, Kupffer cells, and HSCs. LCN2 expression was examined in samples from normal patients and those with NASH. LCN2 gene expression and secretion increased in CCl4-induced liver fibrosis mice model, and SREBP-1c regulated LCN2 gene transcription. Moreover, treatment with holo-LCN2 stimulated intracellular iron accumulation and fibrosis-related gene expression in mouse primary HSCs, but these effects were not observed in 1cKO HSCs, indicating that SREBP-1c-induced LCN2 expression and secretion could stimulate HSCs activation through iron accumulation. Furthermore, LCN2 expression was strongly correlated with inflammation and fibrosis in patients with NASH. Our findings indicate that SREBP-1c regulates Lcn2 gene expression, contributing to diet-induced NASH. Reduced Lcn2 expression in 1cKO mice protects against NASH development. Therefore, the activation of Lcn2 by SREBP-1c establishes a new connection between iron and lipid metabolism, affecting inflammation and HSCs activation. These findings may lead to new therapeutic strategies for NASH.


Assuntos
Ferro , Lipocalina-2 , Cirrose Hepática , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Humanos , Masculino , Camundongos , Tetracloreto de Carbono/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Ferro/metabolismo , Lipocalina-2/metabolismo , Lipocalina-2/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/genética , Cirrose Hepática/induzido quimicamente , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
4.
Environ Pollut ; 348: 123774, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38499174

RESUMO

Industrial cities are strongly influenced by primary emissions of PM2.5 from local industries. In addition, gaseous precursors, such as sulfur oxides (SOX), nitrogen oxides (NOX), and volatile organic compounds (VOCs), emitted from industrial sources, undergo conversion into secondary inorganic and organic aerosols (SIAs and SOAs). In this study, the spatial distributions of primary and secondary PM2.5 in Ulsan, the largest industrial city in South Korea, were visualized. PM2.5 components (ions, carbons, and metals) and PM2.5 precursors (SO2, NO2, NH3, and VOCs) were measured to estimate the concentrations of secondary inorganic ions (SO42-, NO3-, and NH4+) and secondary organic aerosol formation potential (SOAFP). The spatial distributions of SIAs and SOAs were then plotted by combining atmospheric dispersion modeling, receptor modeling, and monitoring data. Spatial distribution maps of primary and secondary PM2.5 provide fundamental insights for formulating management policies in different districts of Ulsan. For instance, among the five districts in Ulsan, Nam-gu exhibited the highest levels of primary PM2.5 and secondary nitrate. Consequently, controlling both PM2.5 and NO2 emissions becomes essential in this district. The methodology developed in this study successfully identified areas with dominant contributions from both primary emissions and secondary formation. This approach can be further applied to prioritize control measures during periods of elevated PM levels in other industrial cities.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Material Particulado/análise , Cidades , Dióxido de Nitrogênio , Monitoramento Ambiental/métodos , Nitratos , Compostos Orgânicos Voláteis/análise , Aerossóis/análise , Estações do Ano
5.
Exp Mol Med ; 56(4): 922-934, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38556544

RESUMO

Skeletal muscle aging results in the gradual suppression of myogenesis, leading to muscle mass loss. However, the specific role of cardiolipin in myogenesis has not been determined. This study investigated the crucial role of mitochondrial cardiolipin and cardiolipin synthase 1 (Crls1) in age-related muscle deterioration and myogenesis. Our findings demonstrated that cardiolipin and Crls1 are downregulated in aged skeletal muscle. Moreover, the knockdown of Crls1 in myoblasts reduced mitochondrial mass, activity, and OXPHOS complex IV expression and disrupted the structure of the mitochondrial cristae. AAV9-shCrls1-mediated downregulation of Crls1 impaired muscle regeneration in a mouse model of cardiotoxin (CTX)-induced muscle damage, whereas AAV9-mCrls1-mediated Crls1 overexpression improved regeneration. Overall, our results highlight that the age-dependent decrease in CRLS1 expression contributes to muscle loss by diminishing mitochondrial quality in skeletal muscle myoblasts. Hence, modulating CRLS1 expression is a promising therapeutic strategy for mitigating muscle deterioration associated with aging, suggesting potential avenues for developing interventions to improve overall muscle health and quality of life in elderly individuals.


Assuntos
Músculo Esquelético , Doenças Musculares , Regeneração , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Doenças Musculares/metabolismo , Doenças Musculares/etiologia , Doenças Musculares/patologia , Doenças Musculares/genética , Envelhecimento/metabolismo , Desenvolvimento Muscular , Mitocôndrias/metabolismo , Modelos Animais de Doenças , Humanos , Cardiolipinas/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Masculino , Mioblastos/metabolismo
6.
Chemosphere ; 314: 137671, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586442

RESUMO

The accurate mapping and assessment of groundwater vulnerability index are crucial for the preservation of groundwater resources from the possible contamination. In this research, novel intelligent predictive Machine Learning (ML) regression models of k-Neighborhood (KNN), ensemble Extremely Randomized Trees (ERT), and ensemble Bagging regression (BA) at two levels of modeling were utilized to improve DRASTIC-LU model in the Miryang aquifer located in South Korea. The predicted outputs from level 1 (KNN and ERT models) were used as inputs for ensemble bagging (BA) in level 2. The predictive groundwater pollution vulnerability index (GPVI), derived from DRASTIC-LU model was adjusted by NO3-N data and was utilized as the target data of the ML models. Hyperparameters for all models were tuned using a Grid Searching approach to determine the best effective model structures. Various statistical metrics and graphical representations were used to evaluate the superior predictive performance among ML models. Ensemble BA model in level 2 was more precise than standalone KNN and ensemble ERT models in level 1 for predicting GPVI values. Furthermore, the ensemble BA model offered suitable outcomes for the unseen data that could subsequently prevent the overfitting issue in the testing phase. Therefore, ML modeling at two levels could be an excellent approach for the proactive management of groundwater resources against contamination.


Assuntos
Água Subterrânea , Nitratos , Nitratos/análise , Monitoramento Ambiental , Água Subterrânea/química , Poluição da Água/análise , Algoritmos
7.
ACS Appl Bio Mater ; 4(9): 7070-7080, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006939

RESUMO

In skeletal-muscle regeneration, it is critical to promote efferocytosis of immune cells and differentiation of satellite cells/postnatal muscle stem cells at the damaged sites. With the optimized poloxamer 407 composition gelled at body temperature, the drugs can be delivered locally. The purpose of this study is to develop a topical injection therapeutic agent for muscle regeneration, sarcopenia, and cachexia. Herein, we construct an injectable, in situ hydrogel system consisting of CD146, IGF-1, collagen I/III, and poloxamer 407, termed CIC gel. The secreted CD146 then binds to VEGFR2 on the muscle surface and effectively induces efferocytosis of neutrophils and macrophages. IGF-1 promotes satellite cell differentiation, and biocompatible collagen evades immune responses of the CIC gel. Consequently, these combined molecules activate muscle regeneration via autophagy and suppress muscle inflammation and apoptosis. Conclusively, we provide an applicable concept of the myogenesis-activating protein formulation, broadening the thermoreversible hydrogel to protein therapeutics for damaged muscle recovery.


Assuntos
Hidrogéis , Nanopartículas , Antígeno CD146/metabolismo , Colágeno/metabolismo , Hidrogéis/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Músculo Esquelético , Nanopartículas/uso terapêutico , Poloxâmero/farmacologia , Cicatrização
8.
Signal Transduct Target Ther ; 5(1): 186, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883951

RESUMO

Sterol regulatory element binding protein-2 (SREBP-2) is activated by cytokines or pathogen, such as virus or bacteria, but its association with diminished cholesterol levels in COVID-19 patients is unknown. Here, we evaluated SREBP-2 activation in peripheral blood mononuclear cells of COVID-19 patients and verified the function of SREBP-2 in COVID-19. Intriguingly, we report the first observation of SREBP-2 C-terminal fragment in COVID-19 patients' blood and propose SREBP-2 C-terminal fragment as an indicator for determining severity. We confirmed that SREBP-2-induced cholesterol biosynthesis was suppressed by Sestrin-1 and PCSK9 expression, while the SREBP-2-induced inflammatory responses was upregulated in COVID-19 ICU patients. Using an infectious disease mouse model, inhibitors of SREBP-2 and NF-κB suppressed cytokine storms caused by viral infection and prevented pulmonary damages. These results collectively suggest that SREBP-2 can serve as an indicator for severity diagnosis and therapeutic target for preventing cytokine storm and lung damage in severe COVID-19 patients.


Assuntos
Betacoronavirus/patogenicidade , Colesterol/biossíntese , Infecções por Coronavirus/genética , Síndrome da Liberação de Citocina/genética , Interações Hospedeiro-Patógeno/genética , Leucócitos Mononucleares/imunologia , Pneumonia Viral/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Betacoronavirus/imunologia , COVID-19 , Estudos de Casos e Controles , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/virologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/mortalidade , Síndrome da Liberação de Citocina/virologia , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Unidades de Terapia Intensiva , Interleucina-1beta/genética , Interleucina-1beta/imunologia , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/virologia , NF-kappa B/genética , NF-kappa B/imunologia , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/mortalidade , Pneumonia Viral/virologia , Cultura Primária de Células , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/imunologia , SARS-CoV-2 , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2/imunologia , Análise de Sobrevida , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
9.
Environ Sci Pollut Res Int ; 27(23): 28912-28930, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32418108

RESUMO

The impact of industrial activities on atmospheric volatile organic compounds (VOCs) in the Sihwa-Banwol complexes, i.e., the largest industrial area in Korea, was investigated. More than 60 VOCs were determined from 850 samples collected from four sites in and around the complexes through a 2-year monitoring campaign from 2005 to 2007. The VOCs of particular concern found in the area were benzene, toluene, ethylbenzene, xylenes, trichloroethylene, and formaldehyde, given their toxicity, concentration, and detection frequency. Toluene was the most abundant one. The VOC concentration rankings were consistent with their emission rankings. Most VOCs had higher concentrations at the industrial sites than at residential sites, indicating a significant impact of industrial emissions. The ambient levels of benzene and formaldehyde were additionally affected by vehicular emissions and secondary formation, respectively. Overall, the VOC levels increased in winter and at night, because of the local weather conditions. In contrast, the formaldehyde concentration increased in summer, owing to its secondary formation in the atmosphere. The ambient VOC levels in Sihwa-Banwol were higher than those in other parts of Korea. Additionally, the cumulative cancer risks posed by the toxic VOCs exceeded a tolerable risk level of 1 × 10-4 in not only the industrial areas but also the residential areas. The sum of the non-cancer risks in both areas significantly exceeded the threshold criterion of 1. The large amounts of aromatic compounds emitted from the industrial complexes are believed to play a crucial role in the elevated levels of surface ozone in the Seoul metropolitan area during the summer season. Therefore, comprehensive measures for controlling the VOC emissions in the Sihwa-Banwol area need to be prioritized to reduce the health risks for residents of not only this area but also the capital Seoul and its surrounding areas.


Assuntos
Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , República da Coreia , Seul , Emissões de Veículos/análise
10.
Biomaterials ; 246: 120000, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32247936

RESUMO

Sepsis is a potentially fatal complication of infections and there are currently no effective therapeutic options for severe sepsis. In this study, we revealed the secretion mechanism of transforming growth factor ß-induced protein (TGFBIp) that was recently identified as a therapeutic target for sepsis, and designed TGFBIp acetylation inhibitory peptide (TAIP) that suppresses acetylation of lysine 676 in TGFBIp. To improve bioavailability and biodegradation of the peptide, TAIP was conjugated to polyamidoamine (PAMAM) dendrimers. Additionally, the cell-penetrating peptide (CPP) was conjugated to the TAIP-modified PAMAM dendrimers for the intracellular delivery of TGFBIp. The resulting nanostructures, decorated with TAIP and CPP via poly(ethylene glycol) linkage, improved the mortality and organ damage in the septic mouse model and suppressed lipopolysaccharide-activated severe vascular inflammatory responses in endothelial cells. Thus, the dendrimer-based nanostructures for delivery of TAIP using CPP show great promise in practical applications in sepsis therapy.


Assuntos
Dendrímeros , Sepse , Acetilação , Animais , Dendrímeros/uso terapêutico , Proteínas da Matriz Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sepse/tratamento farmacológico , Fator de Crescimento Transformador beta/metabolismo
11.
Int J Mol Sci ; 21(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178449

RESUMO

Both glucose and free fatty acids (FFAs) are used as fuel sources for energy production in a living organism. Compelling evidence supports a role for excess fatty acids synthesized in intramuscular space or dietary intermediates in the regulation of skeletal muscle function. Excess FFA and lipid droplets leads to intramuscular accumulation of lipid intermediates. The resulting downregulation of the insulin signaling cascade prevents the translocation of glucose transporter to the plasma membrane and glucose uptake into skeletal muscle, leading to metabolic disorders such as type 2 diabetes. The mechanisms underlining metabolic dysfunction in skeletal muscle include accumulation of intracellular lipid derivatives from elevated plasma FFAs. This paper provides a review of the molecular mechanisms underlying insulin-related signaling pathways after excess accumulation of lipids.


Assuntos
Resistência à Insulina/fisiologia , Insulina/metabolismo , Lipídeos/fisiologia , Músculo Esquelético/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Glucose/metabolismo , Humanos , Transdução de Sinais/fisiologia
13.
BMB Rep ; 52(1): 64-69, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30526769

RESUMO

The loss of skeletal muscle, called sarcopenia, is an inevitable event during the aging process, and significantly impacts quality of life. Autophagy is known to reduce muscle atrophy caused by dysfunctional organelles, even though the molecular mechanism remains unclear. Here, we have discuss the current understanding of exercise-induced autophagy activation in skeletal muscle regeneration and remodeling, leading to sarcopenia intervention. With aging, dysregulation of autophagy flux inhibits lysosomal storage processes involved in muscle biogenesis. AMPK-ULK1 and the FoxO/PGC-1ɑ signaling pathways play a critical role in the induction of autophagy machinery in skeletal muscle, thus these pathways could be targets for therapeutics development. Autophagy has been also shown to be a critical regulator of stem cell fate, which determines satellite cell differentiation into muscle fiber, thereby increasing muscle mass. This review aims to provide a comprehensive understanding of the physiological role of autophagy in skeletal muscle aging and sarcopenia. [BMB Reports 2019; 52(1): 64-69].


Assuntos
Exercício Físico/fisiologia , Condicionamento Físico Animal/fisiologia , Sarcopenia/terapia , Adenilato Quinase , Envelhecimento , Animais , Autofagia/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Diferenciação Celular , Proteína Forkhead Box O1 , Humanos , Fibras Musculares Esqueléticas , Músculo Esquelético/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transdução de Sinais
14.
Thromb Haemost ; 118(10): 1776-1789, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30235477

RESUMO

Sepsis develops because of overwhelming inflammatory responses to bacterial infection, and disrupts vascular integrity. Stabilin-1 (STAB-1) is a phagocytic receptor, which mediates efferocytosis in a phosphatidylserine (PS)-dependent manner. STAB-1 is expected to play important roles in efferocytosis during sepsis. Here, we determined the role of STAB-1 in maintaining and restoring vascular integrity. Macrophages and vascular endothelial cells were used to assess the effect of STAB-1 on survival rate, phagocytic activity, vascular permeability and transendothelial migration (TEM). Additionally, we investigated whether the high-mobility group box 1 (HMGB1)-receptor for advanced glycated end products complex interfered with the binding of Stab1 to PS. Mortality rate was higher in the Stab1-knockout mice than in the wild-type mice, and STAB-1 deficiency was related to reduced macrophage-mediated efferocytosis and the disruption of vascular integrity, which increased vascular permeability, and enhanced TEM. STAB-1 deficiency promoted lung injury, and elevated the expression of sepsis markers. The exogenous application of the anti-HMGB1 neutralizing antibody improved efferocytosis, vascular integrity and survival rate in sepsis. Collectively, our findings indicated that STAB-1 regulated and maintained vascular integrity through the clearance of infected apoptotic endothelial cells. Moreover, our results suggested that interventions targeting vascular integrity by STAB-1 signalling are promising therapeutic approaches to sepsis.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Endotélio Vascular/fisiologia , Inflamação/imunologia , Macrófagos/fisiologia , Sepse/imunologia , Animais , Permeabilidade Capilar , Moléculas de Adesão Celular Neuronais/genética , Feminino , Proteína HMGB1/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose , Fosfatidilserinas/metabolismo , Migração Transendotelial e Transepitelial
15.
EMBO Rep ; 19(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30224412

RESUMO

Coordinated expression of guidance molecules and their signal transduction are critical for correct brain wiring. Previous studies have shown that phospholipase C gamma1 (PLCγ1), a signal transducer of receptor tyrosine kinases, plays a specific role in the regulation of neuronal cell morphology and motility in vitro However, several questions remain regarding the extracellular stimulus that triggers PLCγ1 signaling and the exact role PLCγ1 plays in nervous system development. Here, we demonstrate that PLCγ1 mediates axonal guidance through a netrin-1/deleted in colorectal cancer (DCC) complex. Netrin-1/DCC activates PLCγ1 through Src kinase to induce actin cytoskeleton rearrangement. Neuronal progenitor-specific knockout of Plcg1 in mice causes axon guidance defects in the dorsal part of the mesencephalon during embryogenesis. Adult Plcg1-deficient mice exhibit structural alterations in the corpus callosum, substantia innominata, and olfactory tubercle. These results suggest that PLCγ1 plays an important role in the correct development of white matter structure by mediating netrin-1/DCC signaling.


Assuntos
Axônios/fisiologia , Encéfalo/embriologia , Netrina-1/metabolismo , Fosfolipase C gama/metabolismo , Animais , Axônios/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Receptor DCC/metabolismo , Feminino , Masculino , Mesencéfalo/embriologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Netrina-1/genética , Fosfolipase C gama/genética , Fosforilação , Gravidez , Quinases da Família src/metabolismo
16.
Oncotarget ; 9(5): 5752-5763, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29464031

RESUMO

Colorectal cancer (CRC) is the third diagnosed cancer and the second leading cause of cancer-related deaths in the United States. Colorectal cancer is linked to inflammation and phospholipase Cγ1 (PLCγ1) is associated with tumorigenesis and the development of colorectal cancer; however, evidence of mechanisms connecting them remains unclear. The tight junctions (TJ), as intercellular junctional complexes, have an important role for integrity of the epithelial barrier to regulate the cellular permeability. Here we found that PLCγ1 regulated colitis and tumorigenesis in intestinal epithelial cells (IEC). To induce the colitis-associated cancer (CAC), we used the AOM/DSS model. Mice were sacrificed at 100 days (DSS three cycles) and 120 days (DSS one cycle). In a CAC model, we showed that the deletion of PLCγ1 in IEC decreased the incidence of tumors by enhancing apoptosis and inhibiting proliferation during tumor development. Accordingly, the deletion of PLCγ1 in IEC reduced colitis-induced epithelial inflammation via inhibition of pro-inflammatory cytokines and mediators. The PLCγ1 pathway in IEC accelerated colitis-induced epithelial damage via regulation of TJ proteins. CONCLUSIONS: Our findings suggest that PLCγ1 is a critical regulator of colitis and colorectal cancer and could further help in the development of therapy for colitis-associated cancer.

17.
Oncotarget ; 8(35): 58790-58800, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28938597

RESUMO

The natural, phenolic lipid urushiol exhibits both antioxidant and anticancer activities; however, its biological activity on hepatocellular carcinoma (HCC) has not been previously investigated. Here, we demonstrate that an urushiol derivative, 3-decylcatechol (DC), induces human HCC Huh7 cell death by induction of autophagy. DC initiates the autophagic process by activation of the mammalian target of rapamycin signaling pathway via Unc-51-like autophagy activating kinase 1, leading to autophagosome formation. The autophagy inhibitor, chloroquine, suppressed autolysosome formation and cell death induction by DC, indicating an autophagic cell death. Interestingly, DC also activated the endoplasmic reticulum (ER) stress response that promotes autophagy via p62 transcriptional activation involving the inositol-requiring enzyme 1α/c-Jun N-terminal kinase/c-jun pathway. We also show that cytosolic calcium mobilization is necessary for the ER stress response and autophagy induction by DC. These findings reveal a novel mechanism by which this urushiol derivative induces autophagic cell death in HCC.

18.
Int J Mol Sci ; 18(5)2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28524116

RESUMO

Recently, the interplay between autophagy and apoptosis has become an important factor in chemotherapy for cancer treatment. Inhibition of autophagy may be an effective strategy to improve the treatment of chemo-resistant cancer by consistent exposure to chemotherapeutic drugs. However, no reports have clearly elucidated the underlying mechanisms. Therefore, in this study, we assessed whether salinomycin, a promising anticancer drug, induces apoptosis and elucidated potential antitumor mechanisms in chemo-resistant prostate cancer cells. Cell viability assay, Western blot, annexin V/propidium iodide assay, acridine orange (AO) staining, caspase-3 activity assay, reactive oxygen species (ROS) production, and mitochondrial membrane potential were assayed. Our data showed that salinomycin alters the sensitivity of prostate cancer cells to autophagy. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, enhanced the salinomycin-induced apoptosis. Notably, salinomycin decreased phosphorylated of AKT and phosphorylated mammalian target of rapamycin (mTOR) in prostate cancer cells. Pretreatment with LY294002, an autophagy and PI3K inhibitor, enhanced the salinomycin-induced apoptosis by decreasing the AKT and mTOR activities and suppressing autophagy. However, pretreatment with PD98059 and SB203580, an extracellular signal-regulated kinases (ERK), and p38 inhibitors, suppressed the salinomycin-induced autophagy by reversing the upregulation of ERK and p38. In addition, pretreatment with N-acetyl-l-cysteine (NAC), an antioxidant, inhibited salinomycin-induced autophagy by suppressing ROS production. Our results suggested that salinomycin induces apoptosis, which was related to ROS-mediated autophagy through regulation of the PI3K/AKT/mTOR and ERK/p38 MAPK signaling pathways.


Assuntos
Autofagia/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Piranos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Flavonoides/farmacologia , Humanos , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
19.
Oncol Rep ; 37(6): 3321-3328, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28498472

RESUMO

Salinomycin is a polyether ionophore antibiotic that has recently been shown to induce cell apoptosis in human cancer cells displaying multiple mechanisms of drug resistance. In the present study, we explored the impact of salinomycin on the apoptosis and autophagy as well as the correlation between those effects and endoplasmic reticulum (ER) stress molecular mechanisms in human glioma U87MG cells. Apoptosis, autophagy and reactive oxygen species (ROS) were analyzed using flow cytometry. In addition, expression levels of apoptosis-, autophagy- and ER stress-related proteins were determined by western blotting. The results showed that salinomycin induced apoptosis, ER stress and autophagy in glioma cancer cell lines. In addition, salinomycin also induced ROS generation, and the ROS scavenger N-acetyl-L-cysteine was found to inhibit the salinomycin-induced apoptosis, ER stress and autophagy. The inhibition of ER stress with 4-phenylbutyric acid depressed salinomycin-induced apoptosis and autophagy. Salinomycin increased the expression of autophagy marker protein, LC3B, and accumulation of acidic vesicular organelles. Furthermore, pre-treatment with the autophagy inhibitor 3-methyladenine showed potential in increasing the apoptosis rate induced by salinomycin in the U87MG cells. Taken together, these results revealed that salinomycin induced apoptosis and autophagy via ER stress mediated by ROS, suggesting that ER stress by salinomycin plays a dual function in both promoting and suppressing cell death.


Assuntos
Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glioma/tratamento farmacológico , Piranos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glioma/genética , Glioma/patologia , Humanos , Espécies Reativas de Oxigênio/metabolismo
20.
Anticancer Res ; 37(4): 1747-1758, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28373437

RESUMO

BACKGROUND/AIM: Chemotherapy is a critical option for cancer treatment. However, consistent exposure to chemotherapeutic drugs promotes chemoresistance in cancer cells through diverse mechanisms. Accordingly, we investigated whether salinomycin, a monocarboxylic ionophore, could induce apoptosis in aggressive breast cancer cells or not, as well as its underlying mechanism. MATERIALS AND METHODS: Using salinomycin on two breast cancer cell lines, MCF-7 cells and MDA-MB-231 cells, cell viability, annexin V/propidium iodide staining, acridine orange staining, caspase-3/9 activity, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were assayed. RESULTS: In this study, salinomycin induced apoptosis and autophagy in MDA-MB-231 cells. Salinomycin-mediated ROS production led to mitochondrial dysfunction in MDA-MB-231 cells. Interestingly, treatment of N-acetyl-L-cysteine (NAC), a scavenger of ROS, attenuated salinomycin-induced apoptosis and autophagy. Moreover, autophagy inhibition is involved in acceleration of apoptosis induced by salinomycin. CONCLUSION: Salinomycin induced apoptosis and ROS production, that were blocked by autophagy, thus resulting in protecting cancer cells. This crosstalk of two different physiological responses (autophagy and apoptosis) induced by salinomycin might play pivotal roles in the relationship between autophagy and apoptosis of cancer cells.


Assuntos
Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/patologia , Piranos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Imunofluorescência , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA