Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(35): 37365-37373, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39246471

RESUMO

This study focuses on the discovery of a single-component molecular resist for extreme ultraviolet (EUV) lithography by employing the ionizing radiation-induced decomposition of carbon-fluorine chemical bonds. The target material, DHP-L6, was synthesized by bonding perfluoroalkyl ether moieties to amorphous dendritic hexaphenol (DHP) with a high glass transition temperature. Upon exposure to EUV and electron beam irradiation, DHP-L6 films exhibited a decreasing solubility in fluorous developer media, resulting in negative-tone images. The underlying chemical mechanisms were elucidated by Fourier transform-infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy, and nanoindentation experiments. These analyses highlighted the possible electron-induced decomposition of C-F bonds in DHP-L6, leading to molecular network formation via recombination of the resulting C-centered radicals. Subsequent high-resolution lithographic patterning under EUV irradiation showed that DHP-L6 could create stencil patterns with a line width of 26 nm at an exposure dose of 110 mJ cm-2. These results confirm that single-component small molecular compounds with fluoroalkyl moieties can be employed as patterning materials under ionizing radiation. Nonetheless, additional research is required to reduce the relatively high exposure energy for high-resolution patterning and to enhance the line-edge roughness of the produced stencil.

2.
Adv Mater ; 35(2): e2208215, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36305596

RESUMO

Breaking the thermoelectric (TE) trade-off relationship is an important task for maximizing the TE performance of polymeric semiconductors. Existing efforts have focused on designing high-mobility semiconductors and achieving ordered molecular doping, ignoring the critical role of the molecular orientation during TE conversion. Herein, the achievement of ZT to 0.40 is reported by fine-tuning the molecular orientation of one diketopyrrolopyrrole (DPP)-based polymer (DPP-BTz). Films with bimodal molecular orientation yield superior doping efficiency by increasing the lamellar spacing and achieve increased splitting between the Fermi energy and the transport energy to enhance the thermopower. These factors contribute to the simultaneous improvement in the Seebeck coefficient and electrical conductivity in an unexpected manner. Importantly, the bimodal film exhibits a maximum power factor of up to 346 µW m-1 K-2 , >400% higher than that of unimodal films. These results demonstrate the great potential of molecular orientation engineering in polymeric semiconductors for developing state-of-the-art organic TE (OTE) materials.

3.
J Microbiol ; 59(2): 202-216, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33527319

RESUMO

5-Fluorouracil (5-FU) is an essential drug in systemic chemotherapy treatments for colorectal cancer (CRC). Despite the development of several treatment strategies over the past decades, the patient benefits of 5-FU-based therapies have been compromised by the development of chemoresistance. Differences in treatment responses among CRC patients may be due to genetic and epigenetic factors unique to individuals. Therefore, important factors for realizing personalized medicine are to accurately understand the causes and mechanisms of drug resistance to 5-FU-based therapies and to identify and validate prognostic biomarkers. Gut microbes that interact directly with the host contribute to human health and cancer control. Lactobacillus plantarum, in particular, has the potential to be a therapeutic agent by producing bioactive compounds that may benefit the host. Here, we investigated the gamma-aminobutyric acid (GABA) and GABAB receptor (GABABR)-dependent signaling pathway as a treatment option for 5-FU-resistant HT-29 cells. GABA-producing L. plantarum activates anti-proliferative, anti-migration, and anti-invasion effects against 5-FU-resistant HT-29 cells. The inhibitory effects of GABA-producing L. plantarum are mediated via GABABR. Activated GABABR induces apoptosis through the inhibition of cAMP-dependent signaling pathways and cellular inhibitor of apoptosis protein 2 (cIAP2) expression. Thus, the GABAergic system has potential in 5-FU-resistant HT-29 cells as a predictive biomarker. In addition, GABA-producing L. plantarum is promising as an adjuvant treatment for 5-FU-resistant CRC, and its intervention in neurobiological signaling imply new possibilities for chemoprevention and the treatment of colon cancer-related diseases.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/fisiopatologia , Fluoruracila/farmacologia , Lactobacillus plantarum/metabolismo , Probióticos/administração & dosagem , Receptores de GABA/metabolismo , Ácido gama-Aminobutírico/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células HT29 , Humanos , Metástase Neoplásica , Receptores de GABA/genética , Transdução de Sinais/efeitos dos fármacos
4.
Biochem Biophys Res Commun ; 547: 82-88, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33610044

RESUMO

Caspases play essential roles in apoptotic processes, which is necessary for cellular homeostasis. However, over-activation of caspases and subsequent excessive apoptosis is considered a main cause of Parkinson's disease and liver diseases. Here, we found that the insect-derived peptide, CopA3, which has shown antiapoptotic effects in many apoptosis models, directly binds to caspases. The resulting complexes do not dissociate during denaturing polyacrylamide gel electrophoresis, as evidenced by a distinct shift in the migration of caspase reflecting an increase in their molecular weight. Surface plasmon resonance and experiment using cysteine-substituted mutants of CopA3 collectively revealed that binding of CopA3 to caspases is dependent on an internal cysteine residue. Notably, CopA3 binding significantly inhibited proteolytic activation of downstream caspases by upstream caspases. In summary, the demonstration that CopA3 directly binds to caspases and inhibits their activating cleavage suggests a possible therapeutic approach for treating human diseases resulting from uncontrolled apoptosis.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Caspases/metabolismo , Proteínas de Insetos/farmacologia , Neoplasias/tratamento farmacológico , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Caspases/química , Linhagem Celular Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Proteólise , Ressonância de Plasmônio de Superfície/métodos
5.
RSC Adv ; 11(3): 1517-1523, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35424089

RESUMO

A highly fluorinated alternating polymer, P(RFMi-St), possessing improved thermal properties and patterning capabilities over perfluoroalkyl polymethacrylates under high energy radiation was achieved with semi-perfluorododecyl maleimide (RFMi) and styrene (St). RFMi could be synthesised efficiently via a Mitsunobu reaction condition and copolymerised with St by free radical and reversible-deactivation radical polymerisation protocols. P(RFMi-St) showed a satisfactory glass-transition temperature (108 °C) and intermolecular cross-linking behaviour under electron-beam and commercially more important extreme UV (λ = 13.5 nm) irradiation. The exposed regions lost their solubility, resulting in the successful formation of mechanically non-deteriorated negative-tone images down to 50 nm. In addition, P(RFMi-St) could be solution-processed with chemically non-damaging fluorous liquids, which enabled the polymer to be applied effectively on top of an organic semiconductor layer as a dielectric material (dielectric constant 2.7) for the organic field-effect transistor fabrication.

6.
ACS Appl Mater Interfaces ; 12(2): 2753-2762, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31858776

RESUMO

Dynamic-template-directed assembly is a promising method to enhance molecular ordering and electronic properties of solution-coated polymer semiconductor thin films over a large area. In this work, we establish that multicomponent dynamic templates of complementary chemistries can promote polymer crystallization through cooperative multivalent interactions. We investigate this phenomenon using a combination of templating substrates including a fluoropolymer, a hydrogen-bonded liquid, and an ionic liquid (IL). Template-dependent multiscale morphology is studied by a comprehensive set of characterization techniques to understand how introducing diverse chemical moieties modulates polymer assembly. Our results clearly confirm synergistic effects between components of complementary chemistries constituting the dynamic template. The relative degree of crystallinity is improved by 50-150% for films deposited on multicomponent dynamic templates compared to their neat constituents. In addition, macroscopic alignment is increased significantly (2-5 times) compared to single-component templates. As a result, highly anisotropic charge transport is observed with apparent hole mobilities up to 3.6 cm2 V-1 s-1. In contrast, such a synergistic effect is not observed when using a multicomponent dynamic template of comparable chemistries (i.e., IL and polymerized IL). We elucidate the origin of this synergistic effect by using attenuated total reflectance Fourier transform infrared spectroscopy and isothermal titration calorimetry. When the dynamic template comprises two or more components interacting with complementary binding sites on the conjugated polymer (CP) (esp. backbone vs side chain), the template-polymer interactions is significantly enhanced compared to the sum of single component contributions. These results provide valuable insights into surface-directed CP crystallization during large-area solution coating. Template dynamics is rarely studied and represents a new opportunity for guiding assembly of soft functional matter.

7.
Sci Adv ; 5(8): eaaw7757, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31448330

RESUMO

Intrachain charge transport is unique to conjugated polymers distinct from inorganic and small molecular semiconductors and is key to achieving high-performance organic electronics. Polymer backbone planarity and thin film morphology sensitively modulate intrachain charge transport. However, simple, generic nonsynthetic approaches for tuning backbone planarity and the ensuing multiscale assembly process do not exist. We first demonstrate that printing flow is capable of planarizing the originally twisted polymer backbone to substantially increase the conjugation length. This conformation change leads to a marked morphological transition from chiral, twinned domains to achiral, highly aligned morphology, hence a fourfold increase in charge carrier mobilities. We found a surprising mechanism that flow extinguishes a lyotropic twist-bend mesophase upon backbone planarization, leading to the observed morphology and electronic structure transitions.

8.
ACS Appl Mater Interfaces ; 11(25): 22561-22574, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31192576

RESUMO

Dynamic surfaces play a critical role in templating highly ordered complex structures in living systems but are rarely employed for directing assembly of synthetic functional materials. We design ion gel templates with widely tunable dynamics ( Tg) to template solution-coated conjugated polymers. We hypothesize that the ion gel expedites polymer nucleation by reconfiguring its surface to facilitate cooperative multivalent interactions with the conjugated polymer, validated using both experimental and computational approaches. Varying ion gel dynamics enables large modulation of alignment, molecular orientation, and crystallinity in templated polymer thin films. At the optimal conditions, ion-gel-templated films exhibit 55 times higher dichroic ratio (grazing incidence X-ray diffraction) and 49% increase in the relative degree of crystallinity compared to those templated by the neat polymer matrix. As a result, the maximum hole mobilities increase by factors of 4 and 11 along the π-π stacking and the backbone directions. Intriguingly, we observe a synergistic effect between the gel matrix and the ionic liquid that produces markedly enhanced templating effect than either component alone. Molecular dynamics simulations suggest that complementary multivalent interactions facilitated by template reconfigurability underlie the observed synergy. We further demonstrate field-effect transistors both templated and gated by ion gels with average mobility exceeding 7 cm2 V-1 s-1.

9.
Nat Commun ; 10(1): 2122, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073179

RESUMO

Charge transport in conjugated polymer semiconductors has traditionally been thought to be limited to a low-mobility regime by pronounced energetic disorder. Much progress has recently been made in advancing carrier mobilities in field-effect transistors through developing low-disorder conjugated polymers. However, in diodes these polymers have to date not shown much improved mobilities, presumably reflecting the fact that in diodes lower carrier concentrations are available to fill up residual tail states in the density of states. Here, we show that the bulk charge transport in low-disorder polymers is limited by water-induced trap states and that their concentration can be dramatically reduced through incorporating small molecular additives into the polymer film. Upon incorporation of the additives we achieve space-charge limited current characteristics that resemble molecular single crystals such as rubrene with high, trap-free SCLC mobilities up to 0.2 cm2/Vs and a width of the residual tail state distribution comparable to kBT.

10.
Nano Lett ; 18(9): 5382-5388, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30070851

RESUMO

We report the formation of robust, reproducible, pinhole-free, thin layers of fluorinated polyfluorene conjugated copolymers on a range of polymeric underlayers via a simple solution processing method. This is driven by the different characters of the fluorinated and nonfluorinated sections of these polymers. Photothermal deflection spectroscopy is used to determine that these layers are 1-2 nm thick, corresponding to a molecularly thin layer. Evidence that these layers are continuous and pinhole-free is provided by electroluminescence data from polymer LED devices that incorporate these layers within the stacked LED structure. These reveal, remarkably, light emission solely from these molecularly thin layers.


Assuntos
Fluorenos/química , Substâncias Luminescentes/química , Nanoestruturas/química , Polímeros/química , Eletricidade , Halogenação , Luz , Iluminação/instrumentação , Luminescência , Nanotecnologia , Soluções
11.
ACS Appl Mater Interfaces ; 10(16): 13757-13766, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29605992

RESUMO

Simultaneous sensing and visualization of pressure provides a useful platform to obtain information about a pressurizing object, but the fabrication of such interactive displays at the single-device level remains challenging. Here, we present a pressure responsive electroluminescent (EL) display that allows for both sensing and visualization of pressure. Our device is based on a two-terminal capacitor with six constituent layers: top electrode/insulator/hole injection layer/emissive layer/electron transport layer/bottom electrode. Light emission upon exposure to an alternating current field between two electrodes is controlled by the capacitance change of the insulator arising from the pressure applied on top. Besides capacitive pressure sensing, our EL display allows for direct visualization of the static and dynamic information of position, shape, and size of a pressurizing object on a single-device platform. Monitoring the pressurized area of an elastomeric hemisphere on a device by EL enables quantitative estimation of the Young's modulus of the elastomer, offering a new and facile characterization method for the mechanical properties of soft materials.

12.
ACS Appl Mater Interfaces ; 9(45): 39502-39510, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29057646

RESUMO

We investigate the effect of donor (D) building blocks on the charge transportation characteristics of donor (D)-acceptor (A)-type semiconducting copolymers with alternating electron-donating and electron-accepting units to provide a basis for the rational design of high-performance semiconducting polymers. For this purpose, we studied three different diketopyrrolopyrrole (DPP)-based semiconducting copolymers comprising a common dithienyl-DPP [3,6-dithienyl-2,5-diketopyrrolo(3,4-c)pyrrole] and variable donor moieties: phenylene (P)-PDPPTPT, thiophene (T)-PDPP3T, and thienothiophene (TT)-PDPP2T-TT. Structural analysis using grazing incidence X-ray diffraction indicates that all three DPP-based copolymer films have edge-on phases but poor crystallinity of the films, except the PDPP2T-TT copolymer with branched alkyl side chains that are relatively long. The electrical measurements show that the DPP-based copolymer with a TT donor unit has the highest field-effect mobility value of 0.30 cm2/V s. To understand the role of the donor units in DPP-based D-A copolymers, further insight into the charge transportation behavior is realized by analyzing the temperature-dependent transfer curves of the DPP semiconducting copolymer-based field-effect transistors using the Gaussian disorder model. Compared to the DPP-based D-A-type semiconducting copolymer with a P-moiety and shorter-branched alkyl side chains that exhibit a broad distribution in the density of localized states (DOS) and a higher thermal-activated energy for charge hopping, the DPP copolymers with a TT-moiety and longer branched side chains have the narrowest DOS, the lowest activation energy, and thus the highest hole mobility. These results suggest that the higher mobilities obtained from PDPP2T-TT with a TT donor unit can be attributed to the suppressed DOS distribution near the transport level, which mainly originates from the narrowest energy band gap tuned with the orbital couplings of the DPP acceptor and TT donor units.

13.
J Nanosci Nanotechnol ; 16(6): 6350-4, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27427716

RESUMO

We present the integration of flexible and microscale organic nonvolatile resistive memory devices fabricated in a cross-bar array structure on plastic substrates. This microscale integration was made via orthogonal photolithography method using fluorinated photoresist and solvents and was achieved without causing damage to the underlying organic memory materials. Our flexible microscale organic devices exhibited high ON/OFF ratio (I(ON/I(OFF) > 10(4)) under bending conditions. In addition, the ON and OFF states of our flexible and microscale memory devices were maintained for 10,000 seconds without any serious degradation.

14.
Adv Biol Regul ; 61: 80-5, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26639088

RESUMO

In the brain, the primary phospholipase C (PLC) proteins, PLCß, and PLCγ, are activated primarily by neurotransmitters, neurotrophic factors, and hormones through G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). Among the primary PLC isozymes, PLCß1, PLCß4, and PLCγ1 are highly expressed and differentially distributed, suggesting a specific role for each PLC subtype in different regions of the brain. Primary PLCs control neuronal activity, which is important for synapse function and development. In addition, dysregulation of primary PLC signaling is linked to several brain disorders including epilepsy, schizophrenia, bipolar disorder, Huntington's disease, depression and Alzheimer's disease. In this review, we included current knowledge regarding the roles of primary PLC isozymes in brain disorders.


Assuntos
Encéfalo/enzimologia , Fosfolipase C beta/genética , Fosfolipase C gama/genética , Transdução de Sinais , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Transtorno Bipolar/enzimologia , Transtorno Bipolar/genética , Transtorno Bipolar/patologia , Encéfalo/patologia , Depressão/enzimologia , Depressão/genética , Depressão/patologia , Epilepsia/enzimologia , Epilepsia/genética , Epilepsia/patologia , Regulação da Expressão Gênica , Humanos , Doença de Huntington/enzimologia , Doença de Huntington/genética , Doença de Huntington/patologia , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Neurotransmissores/metabolismo , Fosfolipase C beta/metabolismo , Fosfolipase C gama/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Esquizofrenia/enzimologia , Esquizofrenia/genética , Esquizofrenia/patologia
15.
J Biol Chem ; 291(7): 3209-23, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26655716

RESUMO

The epithelial cells of the gut form a physical barrier against the luminal contents. The collapse of this barrier causes inflammation, and its therapeutic restoration can protect the gut against inflammation. EGF enhances mucosal barrier function and increases colonocyte proliferation, thereby ameliorating inflammatory responses in the gut. Based on our previous finding that the insect peptide CopA3 promotes neuronal growth, we herein tested whether CopA3 could increase the cell proliferation of colonocytes, enhance mucosal barrier function, and ameliorate gut inflammation. Our results revealed that CopA3 significantly increased epithelial cell proliferation in mouse colonic crypts and also enhanced colonic epithelial barrier function. Moreover, CopA3 treatment ameliorated Clostridium difficile toxin As-induced inflammation responses in the mouse small intestine (acute enteritis) and completely blocked inflammatory responses and subsequent lethality in the dextran sulfate sodium-induced mouse model of chronic colitis. The marked CopA3-induced increase of colonocyte proliferation was found to require rapid protein degradation of p21(Cip1/Waf1), and an in vitro ubiquitination assay revealed that CopA3 directly facilitated ubiquitin ligase activity against p21(Cip1/Waf1). Taken together, our findings indicate that the insect peptide CopA3 prevents gut inflammation by increasing epithelial cell proliferation and mucosal barrier function.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Besouros/metabolismo , Colite/prevenção & controle , Enterite/prevenção & controle , Fármacos Gastrointestinais/uso terapêutico , Proteínas de Insetos/uso terapêutico , Mucosa Intestinal/efeitos dos fármacos , Animais , Animais não Endogâmicos , Anti-Inflamatórios não Esteroides/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proliferação de Células/efeitos dos fármacos , Colite/imunologia , Colite/metabolismo , Colite/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/metabolismo , Colo/patologia , Inibidor de Quinase Dependente de Ciclina p21/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Enterite/imunologia , Enterite/metabolismo , Enterite/patologia , Fármacos Gastrointestinais/farmacologia , Células HT29 , Humanos , Proteínas de Insetos/farmacologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Masculino , Camundongos Endogâmicos C57BL , Permeabilidade/efeitos dos fármacos , Interferência de RNA , Técnicas de Cultura de Tecidos , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
16.
Adv Mater ; 27(45): 7356-64, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26479721

RESUMO

Aligned films of a semiconducting DPP-based copolymer exhibit highly anisotropic charge transport with a band-like temperature dependence along the alignment direction and hole mobilities of up to 6.7 cm(2) V(-1) s(-1) . X-ray diffraction measurements reveal an exceptional degree of in-plane alignment, high crystallinity, and a dominant face-on orientation of the polymer backbones. The surprising charge-transport properties are interpreted in a tie-chain model consistent with anisotropic activation energies.

17.
Chem Sci ; 6(12): 6949-6960, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29861933

RESUMO

In this article we discuss the synthesis of four new low band-gap co-polymers based on the diketopyrrolopyrrole (DPP) and benzotriazole (BTZ) monomer unit. We demonstrate that the BTZ unit allows for additional solubilizing side-chains on the co-monomer and show that the introduction of a linear side-chain on the DPP-unit leads to an increase in thin-film order and charge-carrier mobility if a sufficiently solubilizing, branched, side chain is attached to the BTZ. We compare two different synthetic routes, direct arylation and Suzuki-polycondensation, by a direct comparison of polymers obtained via the two routes and show that direct arylation produces polymers with lower electrical performance which we attribute to a higher density of chain Furthermore we demonstrate that a polymer utilizing this design motif and synthesized via Suzuki-polycondensation ((l-C18)-DPP-(b-C17)-BTZ) exhibits exceptionally high and near balanced average electron and hole mobilities >2 cm2 V-1 s-1 which are among the highest, robustly extracted mobility values reported for DPP copolymers in a top-gate configuration to date. Our results demonstrate clearly that linear side chain substitution of the DPP unit together with co-monomers that allow for the use of sufficiently long or branched solubilizing side chains can be an attractive design motif for solution processable, high mobility DPP copolymers.

18.
Biochem Biophys Res Commun ; 448(3): 292-7, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24796676

RESUMO

We recently isolated a polypeptide from the earthworm Lumbricus terrestris that is structurally similar to defensin, a well-known antibacterial peptide. An 11-mer antibacterial peptide (NH2-RNRRWCIDQQA), designated Lumbricusin, was synthesized based on the amino acid sequence of the isolated polypeptide. Since we previously reported that CopA3, a dung beetle peptide, enhanced neuronal cell proliferation, we here examined whether Lumbricusin exerted neurotropic and/or neuroprotective effects. Lumbricusin treatment induced a time-dependent increase (∼51%) in the proliferation of human neuroblastoma SH-SY5Y cells. Lumbricusin also significantly inhibited the apoptosis and decreased viability induced by treatment with 6-hydroxy dopamine, a Parkinson's disease-mimicking agent. Immunoblot analyses revealed that Lumbricusin treatment increased ubiquitination of p27(Kip1) protein, a negative regulator of cell-cycle progression, in SH-SY5Y cells, and markedly promoted its degradation. Notably, adenoviral-mediated over-expression of p27(Kip1) significantly blocked the antiapoptotic effect of Lumbricusin in 6-hydroxy dopamine-treated SH-SY5Y cells. These results suggest that promotion of p27(Kip1) degradation may be the main mechanism underlying the neuroprotective and neurotropic effects of Lumbricusin.


Assuntos
Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Proteínas de Helminto/isolamento & purificação , Fármacos Neuroprotetores/isolamento & purificação , Oligoquetos/química , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/farmacologia , Humanos , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Oligoquetos/genética , Oxidopamina/antagonistas & inibidores , Oxidopamina/toxicidade , Doença de Parkinson/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos
19.
J Microbiol Biotechnol ; 24(5): 696-703, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24509250

RESUMO

Clostridium difficile causes mucosal damage and diarrhea by releasing two exotoxins: toxin A and toxin B. C. difficile colitis is associated with alterations in bowel flora and the failure to mount an effective antibody response. The aim of the current study was to investigate whether antitoxin sera prevent toxin-A-induced apoptosis, cytoskeletal disaggregation, cell detachment, and tight junction loss in cultured colonic epithelial cells. Serum samples were isolated from mice that survived a C. difficile infection following antibiotic treatment, and the antitoxin effects of these samples were investigated in toxin-A-exposed HT29 colonic epithelial cells and a toxin-A-induced animal model of gut inflammation. Unchallenged mice did not produce IgG against toxin A, whereas serum (antiserum) from C. difficile-challenged mice showed significant IgG responses against toxin A. Treatment with the antiserum markedly inhibited mucosal damage and inflammation in the toxin-A-treated mouse model. In contrast to control mouse serum, the antiserum also markedly inhibited toxin-A-induced DNA fragmentation, dephosphorylation of paxillin and Epo receptor (EpoR), deacetylation of tubulin, and upregulation of p21(WAF1/CIP1) and p53. Taken together, these results reveal that the generated antitoxin serum has biotherapeutic effects in preventing various C. difficile toxin-A-induced cellular toxicities.


Assuntos
Toxinas Bacterianas/efeitos adversos , Clostridioides difficile/imunologia , Enterocolite Pseudomembranosa/imunologia , Enterotoxinas/efeitos adversos , Soros Imunes/imunologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Animais , Antitoxinas/imunologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Linhagem Celular , Colite/induzido quimicamente , Colite/imunologia , Colite/metabolismo , Modelos Animais de Doenças , Células HT29 , Humanos , Soros Imunes/farmacologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Transdução de Sinais , Estresse Fisiológico
20.
Philos Trans R Soc Lond B Biol Sci ; 369(1633): 20130144, 2014 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-24298146

RESUMO

The microtubule-associated protein tau is a principal component of neurofibrillary tangles, and has been identified as a key molecule in Alzheimer's disease and other tauopathies. However, it is unknown how a protein that is primarily located in axons is involved in a disease that is believed to have a synaptic origin. To investigate a possible synaptic function of tau, we studied synaptic plasticity in the hippocampus and found a selective deficit in long-term depression (LTD) in tau knockout mice in vivo and in vitro, an effect that was replicated by RNAi knockdown of tau in vitro. We found that the induction of LTD is associated with the glycogen synthase kinase-3-mediated phosphorylation of tau. These observations demonstrate that tau has a critical physiological function in LTD.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Sinapses/fisiologia , Tauopatias/fisiopatologia , Proteínas tau/metabolismo , Animais , Western Blotting , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microdissecção , Microscopia Eletrônica , Fosforilação , Interferência de RNA , Ratos , Ratos Wistar , Frações Subcelulares , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA