Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(36)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32917610

RESUMO

Passive radiative cooling functions by reflecting the solar spectrum and emitting infrared waves in broadband or selectively. However, cooling enclosed spaces that trap heat by greenhouse effect remains a challenge. We present a Janus emitter (JET) consisting of an Ag-polydimethylsiloxane layer on micropatterned quartz substrate. The induced spoof surface plasmon polariton helps overcome inherent emissivity loss of the polymer and creates near-ideal selective and broadband emission on the separate sides. This design results in not only remarkable surface cooling when the JET is attached with either side facing outwards but also space cooling when used as an enclosure wall. Thus, the JET can passively mitigate the greenhouse effect in enclosures while offering surface cooling performance comparable to conventional radiative coolers.

2.
Opt Express ; 27(13): 17561-17570, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31252713

RESUMO

We report on 4x20 silicon photonic MEMS switch that is capable of multicasting. The switch is built on passive optical crossbar network with gap-adjustable directional couplers. The switch has high on-off extinction ratio (59 dB), low insertion loss (< 4.0 dB), small footprint (1.2x4.5 mm2), and fast response (9.8 µs). The switching voltage is 9.6 V and 20 dB bandwidth is 31.5 nm. One-to-two and one-to-four multicast operations are demonstrated.

3.
Opt Express ; 27(13): 18959-18969, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31252830

RESUMO

We present a design for an analog phase shifter based on Silicon Photonic MEMS technology. The operation principle is based on a two-step parallel plate electrostatic actuation mechanism to bring a vertically movable suspended tapered waveguide in a first step into proximity of the bus waveguide and to tune the phase of the propagating coupled mode in a second step by actuation of the suspended waveguide to tune the vertical gap. In the coupled state, the effective index of the optical supermode and the total accumulated phase delay can be varied by changing the vertical separation between the adiabatically tapered suspended and the fixed bus waveguides. Simulations predict that π phase shift can be achieved with an actuation voltage of 19 V, corresponding to a displacement of 19 nm. With an adiabatic coupler geometry, the optical signal can be coupled between the moving waveguide and the bus waveguide with low loss in a wide wavelength range from 1.5 µm to 1.6 µm keeping the average insertion loss below 0.3 dB.

4.
Opt Express ; 23(9): 11975-84, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25969287

RESUMO

We present a novel waveguide coupling scheme where a germanium diode grown via rapid melt growth is wrapped around a silicon waveguide. A 4 fF PIN photodiode is demonstrated with 0.95 A/W responsivity at 1550 nm, 6 nA dark current, and nearly 9 GHz bandwidth. Devices with shorter intrinsic region exhibit higher bandwidth (30 GHz) and slightly lower responsivity (0.7 A/W). An NPN phototransistor is also demonstrated using the same design with 14 GHz f(T).

5.
Opt Express ; 21(14): 16561-9, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23938507

RESUMO

Optical antennas have been widely used for sensitive photodetection, efficient light emission, high resolution imaging, and biochemical sensing because of their ability to capture and focus light energy beyond the diffraction limit. However, widespread application of optical antennas has been limited due to lack of appropriate methods for uniform and large area fabrication of antennas as well as difficulty in achieving an efficient design with small mode volume (gap spacing < 10nm). Here, we present a novel optical antenna design, arch-dipole antenna, with optimal radiation efficiency and small mode volume, 5 nm gap spacing, fabricated by CMOS-compatible deep-UV spacer lithography. We demonstrate strong surface-enhanced Raman spectroscopy (SERS) signal with an enhancement factor exceeding 108 from the arch-dipole antenna array, which is two orders of magnitude stronger than that from the standard dipole antenna array fabricated by e-beam lithography. Since the antenna gap spacing, the critical dimension of the antenna, can be defined by deep-UV lithography, efficient optical antenna arrays with nanometer-scale gap can be mass-produced using current CMOS technology.


Assuntos
Nanotecnologia/instrumentação , Fotometria/instrumentação , Refratometria/instrumentação , Semicondutores , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
6.
Langmuir ; 28(6): 3102-11, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22260193

RESUMO

We report a fast, high-throughput method to create size-tunable micro/nanoparticle clusters via evaporative assembly in picoliter-scale droplets of particle suspension. Mediated by gravity force and surface tension force of a contacting surface, picoliter-scale droplets of the suspension are generated from a nanofabricated printing head. Rapid evaporative self-assembly of the particles on a hydrophobic surface leads to fast clustering of micro/nanoparticles and forms particle clusters of tunable sizes and controlled spacing. The evaporating behavior of the droplet is observed in real-time, and the clustering characteristics of the particles are understood based on the physics of evaporative-assembly. With this method, multiplex printing of various particle clusters with accurate positioning and alignment are demonstrated. Also, size-unifomity of the cluster arrays is thoroughly analyzed by examining the metallic nanoparticle cluster-arrays based on surface-enhanced Raman spectroscopy (SERS).

7.
PLoS One ; 6(10): e26437, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22028878

RESUMO

To activate clot formation and maintain hemostasis, platelets adhere and spread onto sites of vascular injury. Although this process is well-characterized biochemically, how the physical and spatial cues in the microenvironment affect platelet adhesion and spreading remain unclear. In this study, we applied deep UV photolithography and protein micro/nanostamping to quantitatively investigate and characterize the spatial guidance of platelet spreading at the single cell level and with nanoscale resolution. Platelets adhered to and spread only onto micropatterned collagen or fibrinogen surfaces and followed the microenvironmental geometry with high fidelity and with single micron precision. Using micropatterned lines of different widths, we determined that platelets are able to conform to micropatterned stripes as thin as 0.6 µm and adopt a maximum aspect ratio of 19 on those protein patterns. Interestingly, platelets were also able to span and spread over non-patterned regions of up to 5 µm, a length consistent with that of maximally extended filopodia. This process appears to be mediated by platelet filopodia that are sensitive to spatial cues. Finally, we observed that microenvironmental geometry directly affects platelet biology, such as the spatial organization and distribution of the platelet actin cytoskeleton. Our data demonstrate that platelet spreading is a finely-tuned and spatially-guided process in which spatial cues directly influence the biological aspects of how clot formation is regulated.


Assuntos
Plaquetas/citologia , Tamanho Celular , Microambiente Celular , Adesividade Plaquetária , Análise de Célula Única/métodos , Adulto , Plaquetas/metabolismo , Microambiente Celular/efeitos da radiação , Colágeno/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/efeitos da radiação , Fibrinogênio/metabolismo , Humanos , Microtecnologia , Nanotecnologia , Adesividade Plaquetária/efeitos da radiação , Impressão , Pseudópodes/metabolismo , Pseudópodes/efeitos da radiação , Raios Ultravioleta
8.
Nano Lett ; 11(8): 3425-30, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21774501

RESUMO

A high-throughput process for nanotexturing of hard and soft surfaces based on the roll-to-roll anodization and etching of low-cost aluminum foils is presented. The process enables the precise control of surface topography, feature size, and shape over large areas thereby presenting a highly versatile platform for fabricating substrates with user-defined, functional performance. Specifically, the optical and surface wetting properties of the foil substrates were systematically characterized and tuned through the modulation of the surface texture. In addition, textured aluminum foils with pore and bowl surface features were used as zeptoliter reaction vessels for the well-controlled synthesis of inorganic, organic, and plasmonic nanomaterials, demonstrating yet another powerful potential use of the presented approach.

9.
Nano Lett ; 11(7): 2606-10, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21648393

RESUMO

Optical antennas have generated much interest in recent years due to their ability to focus optical energy beyond the diffraction limit, benefiting a broad range of applications such as sensitive photodetection, magnetic storage, and surface-enhanced Raman spectroscopy. To achieve the maximum field enhancement for an optical antenna, parameters such as the antenna dimensions, loading conditions, and coupling efficiency have been previously studied. Here, we present a framework, based on coupled-mode theory, to achieve maximum field enhancement in optical antennas through optimization of optical antennas' radiation characteristics. We demonstrate that the optimum condition is achieved when the radiation quality factor (Q(rad)) of optical antennas is matched to their absorption quality factor (Q(abs)). We achieve this condition experimentally by fabricating the optical antennas on a dielectric (SiO(2)) coated ground plane (metal substrate) and controlling the antenna radiation through optimizing the dielectric thickness. The dielectric thickness at which the matching condition occurs is approximately half of the quarter-wavelength thickness, typically used to achieve constructive interference, and leads to ∼20% higher field enhancement relative to a quarter-wavelength thick dielectric layer.


Assuntos
Nanotecnologia , Óptica e Fotônica , Nanoestruturas/química , Tamanho da Partícula , Dióxido de Silício/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA