Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 86, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38189951

RESUMO

Despite the discovery of several bacteria capable of interacting with polymers, the activity of the natural bacterial isolates is limited. Furthermore, there is a lack of knowledge regarding the development of bioprocesses for polyethylene (PE) degradation. Here, we report a bioprocess using pseudo-resting cells for efficient degradation of PE. The bacterial strain Acinetobacter nosocomialis was isolated from PE-containing landfills and characterized using low-density PE (LDPE) surface oxidation when incubated with LDPE. We optimized culture conditions to generate catalytic pseudo-resting cells of A. nosocomialis that are capable of degrading LDPE films in a bioreactor. After 28 days of bioreactor operation using pseudo-resting cells of A. nosocomialis, we observed the formation of holes on the PE film (39 holes per 217 cm2, a maximum diameter of 1440 µm). This study highlights the potential of bacteria as biocatalysts for the development of PE degradation processes. KEY POINTS: • New bioprocess has been proposed to degrade polyethylene (PE). • Process with pseudo-resting cells results in the formation of holes in PE film. • We demonstrated PE degradation using A. nosocomialis as a biocatalyst.


Assuntos
Acinetobacter , Polietileno , Reatores Biológicos , Catálise
2.
Metab Eng ; 77: 188-198, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37054966

RESUMO

Here, we report the construction of a Clostridium acetobutylicum strain ATCC 824 (pCD07239) by heterologous expression of carbonyl branch genes (CD630_0723∼CD630_0729) from Clostridium difficile, aimed at installing a heterologous Wood-Ljungdahl pathway (WLP). As part of this effort, in order to validate the methyl branch of the WLP in the C. acetobutylicum, we performed 13C-tracing analysis on knockdown mutants of four genes responsible for the formation of 5-methyl-tetrahydrofolate (5-methyl-THF) from formate: CA_C3201, CA_C2310, CA_C2083, and CA_C0291. While C. acetobutylicum 824 (pCD07239) could not grow autotrophically, in heterotrophic fermentation, it began producing butanol at the early growth phase (OD600 of 0.80; 0.162 g/L butanol). In contrast, solvent production in the parent strain did not begin until the early stationary phase (OD600 of 7.40). This study offers valuable insights for future research on biobutanol production during the early growth phase.


Assuntos
Clostridium acetobutylicum , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Solventes , Madeira , Fermentação , Butanóis/metabolismo
3.
Microbiol Resour Announc ; 12(1): e0107722, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36598222

RESUMO

Due to the hazard of plastic waste exposed to the environment, microorganisms capable of degrading different polymeric pollutants have gained attention. Here, we report the complete genome sequence of Acinetobacter nosocomialis GNU001, which was isolated from a landfill. The genome was composed of a circular chromosome of 3,850,149 bp and a plasmid.

4.
Ecotoxicol Environ Saf ; 242: 113933, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35930840

RESUMO

In the more than 100 years since the invention of plastics, various plastic polymers have been developed that exhibit different characteristics and have been widely used in production and life. In 2020 alone, nearly 400 million tons of plastics were produced globally. However, while plastic such as polyethylene brings us convenience, it also threatens environmental sustainability and human health. Due to insufficient recycling efficiency, millions of tons of polyethylene pollutants accumulate in terrestrial or marine environments each year. Polyethylene is elastic, chemically stable, and non-biodegradable, and the traditional disposal methods include landfilling and incineration. These methods are costly, unsustainable, and further increase the burden on the environment. Therefore, recent research has increasingly focused on the biodegradation of polyethylene. In this work, we briefly summarized polyethylene's properties and environmental toxicity. We also reviewed the recent advances in the biodegradation of polyethylene with a summary of traditional abiotic methods. Finally, we proposed a brief research direction in polyethylene study with the aspect of environmental toxicology and industrial applications of decomposition technology.


Assuntos
Poluentes Ambientais , Polietileno , Biodegradação Ambiental , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Substâncias Perigosas , Humanos , Plásticos/química , Polietileno/metabolismo , Polietileno/toxicidade , Reciclagem
5.
Front Bioeng Biotechnol ; 9: 754250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760879

RESUMO

ATPase, a key enzyme involved in energy metabolism, has not yet been well studied in Clostridium acetobutylicum. Here, we knocked down the atpG gene encoding the ATPase gamma subunit in C. acetobutylicum ATCC 824 using a mobile group II intron system and analyzed the physiological characteristics of the atpG gene knockdown mutant, 824-2866KD. Properties investigated included cell growth, glucose consumption, production of major metabolites, and extracellular pH. Interestingly, in 2-L batch fermentations, 824-2866KD showed no significant difference in metabolite biosynthesis or cell growth compared with the parent ATCC 824. However, the pH value in 824-2866KD cultures at the late stage of the solventogenic phase was abnormally high (pH 6.12), compared with that obtained routinely in the culture of ATCC 824 (pH 5.74). This phenomenon was also observed in batch cultures of another C. acetobutylicum, BEKW-2866KD, an atpG-knockdown and pta-buk double-knockout mutant. The findings reported in this study suggested that ATPase is relatively minor than acid-forming pathway in ATP metabolism in C. acetobutylicum.

6.
Sci Rep ; 10(1): 12132, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699275

RESUMO

Marine biomasses capable of fixing carbon dioxide have attracted attention as an alternative to fossil resources for fuel and chemical production. Although a simple co-fermentation of fermentable sugars, such as glucose and galactose, has been reported from marine biomass, no previous report has discussed the fine-control of the galactose-to-glucose consumption ratio in this context. Here, we sought to finely control the galactose-to-glucose consumption ratio in the co-fermentation of these sugars using engineered Escherichia coli strains. Toward this end, we constructed E. coli strains GR2, GR2P, and GR2PZ by knocking out galRS, galRS-pfkA, and galRS-pfkA-zwf, respectively, in parent strain W3110. We found that strains W3110, GR2, GR2P, and GR2PZ achieved 0.03, 0.09, 0.12, and 0.17 galactose-to-glucose consumption ratio (specific galactose consumption rate per specific glucose consumption rate), respectively, during co-fermentation. The ratio was further extended to 0.67 by integration of a brief process optimization for initial sugar ratio using GR2P strain. The strategy reported in this study will be helpful to expand our knowledge on the galactose utilization under glucose conditions.


Assuntos
Escherichia coli/metabolismo , Galactose/metabolismo , Glucose/metabolismo , Técnicas de Cultura Celular por Lotes , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Fosfofrutoquinase-1/deficiência , Fosfofrutoquinase-1/genética , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-31824939

RESUMO

Hyaluronic acid is a glycosaminoglycan biopolymer widely present throughout connective and epithelial tissue, and has been of great interest for medical and cosmetic applications. In the microbial production of hyaluronic acid, it has not been established to utilize galactose enabling to be converted to UDP-glucuronic acid, which is a precursor for hyaluronic acid biosynthesis. In this study, we engineered Escherichia coli to produce hyaluronic acid from glucose and galactose. The galactose-utilizing Leloir pathway was activated by knocking out the galR and galS genes encoding the transcriptional repressors. Also, the hasA gene from Streptococcus zooepidemicus was introduced for the expression of hyaluronic acid synthase. The consumption rates of glucose and galactose were modulated by knockout of the pfkA and zwf genes, which encode 6-phosphofructokinase I and glucose-6-phosphate dehydrogenase, respectively. Furthermore, the precursor biosynthesis pathway for hyaluronic acid production was manipulated by separately overexpressing the gene clusters galU-ugd and glmS-glmM-glmU, which enable the production of UDP-glucuronic acid and UDP-N-acetyl-glucosamine, respectively. Batch culture of the final engineered strain produced 29.98 mg/L of hyaluronic acid from glucose and galactose. As a proof of concept, this study demonstrated the production of hyaluronic acid from glucose and galactose in the engineered E. coli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA