Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Genomics Proteomics ; 21(3): 285-294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670584

RESUMO

BACKGROUND/AIM: Colorectal cancer (CRC) is the third most common cancer worldwide, and is second only to lung cancer with respect to cancer-related deaths. Noninvasive molecular imaging using established markers is a new emerging method to diagnose CRC. The human ephrin receptor family type-A 2 (hEPHA2) oncoprotein is overexpressed at the early, but not late, stages of CRC. Previously, we reported development of an E1 monobody that is specific for hEPHA2-expressing cancer cells both in vitro and in vivo. Herein, we investigated the ability of the E1 monobody to detect hEPHA2 expressing colorectal tumors in a mouse model, as well as in CRC tissue. MATERIALS AND METHODS: The expression of hEPHA2 on the surface of CRC cells was analyzed by western blotting and flow cytometry. The targeting efficacy of the E1 monobody for CRC cells was examined by flow cytometry, and immunofluorescence staining. E1 conjugated to the Renilla luciferase variant 8 (Rluc8) reporter protein was used for in vivo imaging in mice. Additionally, an enhanced green fluorescence protein (EGFP) conjugated E1 monobody was used to check the ability of the E1 monobody to target CRC tissue. RESULTS: The E1 monobody bound efficiently to hEPHA2-expressing CRC cell lines, and E1 conjugated to the Rluc8 reporter protein targeted tumor tissues in mice transplanted with HCT116 CRC tumor cells. Finally, E1-EGFP stained tumor tissues from human CRC patients, showing a pattern similar to that of an anti-hEPHA2 antibody. CONCLUSION: The E1 monobody has utility as an EPHA2 targeting agent for the detection of CRC.


Assuntos
Neoplasias Colorretais , Receptor EphA2 , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/diagnóstico , Humanos , Receptor EphA2/metabolismo , Receptor EphA2/genética , Animais , Camundongos , Linhagem Celular Tumoral , Camundongos Nus
2.
Biochem Pharmacol ; 210: 115473, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36863616

RESUMO

L-Asparaginase (L-ASNase), a bacterial enzyme that degrades asparagine, has been commonly used in combination with several chemical drugs to treat malignant hematopoietic cancers such as acute lymphoblastic leukemia (ALL). In contrast, the enzyme was known to inhibit the growth of solid tumor cells in vitro, but not to be effective in vivo. We previously reported that two novel monobodies (CRT3 and CRT4) bound specifically with calreticulin (CRT) exposed on tumor cells and tissues during immunogenic cell death (ICD). Here, we engineered L-ASNases conjugated with monobodies at the N-termini and PAS200 tags at the C-termini (CRT3LP and CRT4LP). These proteins were expected to possess four monobody and PAS200 tag moieties, which did not disrupt the L-ASNase conformation. These proteins were expressed 3.8-fold more highly in E. coli than those without PASylation. The purified proteins were highly soluble, with much greater apparent molecular weights than expected ones. Their affinity (Kd) against CRT was about 2 nM, 4-fold higher than that of monobodies. Their enzyme activity (∼6.5 IU/nmol) was similar to that of L-ASNase (∼7.2 IU/nmol), and their thermal stability was significantly increased at 55 °C. Their half-life times were > 9 h in mouse sera, about 5-fold longer than that of L-ASNase (∼1.8 h). Moreover, CRT3LP and CRT4LP bound specifically with CRT exposed on tumor cells in vitro, and additively suppressed the tumor growth in CT-26 and MC-38 tumor-bearing mice treated with ICD-inducing drugs (doxorubicin and mitoxantrone) but not with a non-ICD-inducing drug (gemcitabine). All data indicated that PASylated CRT-targeted L-ASNases enhanced the anticancer efficacy of ICD-inducing chemotherapy. Taken together, L-ASNase would be a potential anticancer drug for treating solid tumors.


Assuntos
Asparaginase , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Camundongos , Asparaginase/genética , Asparaginase/farmacologia , Asparaginase/uso terapêutico , Escherichia coli/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Calreticulina/uso terapêutico , Morte Celular Imunogênica , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
3.
Molecules ; 27(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164164

RESUMO

Interleukin-1 beta (IL-1ß) has diverse physiological functions and plays important roles in health and disease. In this report, we focus on its function in the production of pro-inflammatory cytokines, including IL-6 and IL-8, which are implicated in several autoimmune diseases and host defense against infection. IL-1ß activity is markedly dependent on the binding affinity toward IL-1 receptors (IL-1Rs). Several studies have been conducted to identify suitable small molecules that can modulate the interactions between 1L-1ß and 1L-1R1. Based on our previous report, where DPIE [2-(1,2-Diphenyl-1H-indol-3-yl)ethanamine] exhibited such modulatory activity, three types of DPIE derivatives were synthesized by introducing various substituents at the 1, 2, and 3 positions of the indole group in DPIE. To predict a possible binding pose in complex with IL-1R1, a docking simulation was performed. The effect of the chemicals was determined in human gingival fibroblasts (GFs) following IL-1ß induction. The DPIE derivatives affected different aspects of cytokine production. Further, a group of the derivatives enabled synergistic pro-inflammatory cytokine production, while another group caused diminished cytokine production compared to DPIE stimulation. Some groups displayed no significant difference after stimulation. These findings indicate that the modification of the indole site could modulate IL-1ß:IL1R1 binding affinity to reduce or enhance pro-inflammatory cytokine production.


Assuntos
Citocinas/agonistas , Citocinas/antagonistas & inibidores , Indóis/farmacologia , Mediadores da Inflamação/agonistas , Mediadores da Inflamação/antagonistas & inibidores , Fenetilaminas/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Indóis/química , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-1beta/agonistas , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/metabolismo , Fenetilaminas/química
4.
J Cell Mol Med ; 25(3): 1425-1438, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33369010

RESUMO

The dynamic balance between bone formation and bone resorption is vital for the retention of bone mass. The abnormal activation of osteoclasts, unique cells that degrade the bone matrix, may result in many bone diseases such as osteoporosis. Osteoporosis, a bone metabolism disease, occurs when extreme osteoclast-mediated bone resorption outstrips osteoblast-related bone synthesis. Therefore, it is of great interest to identify agents that can regulate the activity of osteoclasts and prevent bone loss-induced bone diseases. In this study, we found that N-[2-(4-benzoyl-1-piperazinyl)phenyl]-2-(4-chlorophenoxy) acetamide (PPOAC-Bz) exerted a strong inhibitory effect on osteoclastogenesis. PPOAC-Bz altered the mRNA expressions of several osteoclast-specific marker genes and blocked the formation of mature osteoclasts, suppressing F-actin belt formation and bone resorption activity in vitro. In addition, PPOAC-Bz prevented OVX-induced bone loss in vivo. These findings highlighted the potential of PPOAC-Bz as a prospective drug for the treatment of osteolytic disorders.


Assuntos
Acetamidas/farmacologia , Conservadores da Densidade Óssea/farmacologia , Reabsorção Óssea/tratamento farmacológico , Acetamidas/química , Animais , Conservadores da Densidade Óssea/química , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Células Cultivadas , Modelos Animais de Doenças , Camundongos , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Osteoporose/metabolismo , Osteoporose/patologia , Ligante RANK/genética , Ligante RANK/metabolismo , Índice de Gravidade de Doença , Microtomografia por Raio-X
5.
Bone ; 142: 115707, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33141068

RESUMO

Excessive bone resorption mediated by mature osteoclasts can cause osteoporosis, leading to fragility fractures. Therefore, an effective therapeutic strategy for anti-osteoporosis drugs is the reduction of osteoclast activity. In this study, the osteoclast inhibitory activity of a novel compound, N-phenyl-methylsulfonamido-acetamide (PMSA), was examined. PMSA treatment inhibited receptor activator of nuclear factor kappa B ligand (RNAKL)-induced osteoclast differentiation in bone marrow-derived macrophage cells (BMMs). We investigated two PMSAs, N-2-(3-acetylphenyl)-N-2-(methylsulfonyl)-N-1-[2-(phenylthio)phenyl] glycinamide (PMSA-3-Ac), and N-2-(5-chloro-2-methoxyphenyl)-N-2-(methylsulfonyl)-N-1-[2-(phenylthio)phenyl]glycinamide (PMSA-5-Cl), to determine their effects on osteoclast differentiation. PMSAs inhibited the signaling pathways at the early stage. PMSA-3-Ac inhibited tumor necrosis factor receptor-associated factor 6 (TRAF6) expression, whereas PMSA-5-Cl suppressed the mitogen-activated protein kinase (MAPK) signaling pathways. However, both PMSAs inhibited the master transcription factor, nuclear factor of activated T cell cytoplasmic-1 (NFATc1), by blocking nuclear localization. An in vivo study of PMSAs was performed in an ovariectomized (OVX) mouse model, and PMSA-5-Cl prevented bone loss in OVX mice. Therefore, our results suggested that PMSAs, specifically PMSA-5-Cl, may serve as a potential therapeutic agent for postmenopausal osteoporosis.


Assuntos
Reabsorção Óssea , Preparações Farmacêuticas , Acetamidas , Animais , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular , Estrogênios/farmacologia , Feminino , Humanos , Camundongos , Fatores de Transcrição NFATC , Osteoclastos , Osteogênese , Ovariectomia , Ligante RANK
6.
Pharmaceutics ; 12(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316169

RESUMO

The number of therapeutic peptides for human treatment is growing rapidly. However, their development faces two major issues: the poor yield of large peptides from conventional solid-phase synthesis, and the intrinsically short serum half-life of peptides. To address these issues, we investigated a platform for the production of a recombinant therapeutic peptide with an extended serum half-life involving the site-specific conjugation of human serum albumin (HSA). HSA has an exceptionally long serum half-life and can be used to extend the serum half-lives of therapeutic proteins and peptides. We used glucagon-like-peptide 1 (GLP-1) as a model peptide in the present study. A "clickable" non-natural amino acid-p-azido-l-phenylalanine (AzF)-was incorporated into three specific sites (V16, Y19, and F28) of a GLP-1 variant, followed by conjugation with HSA through strain-promoted azide-alkyne cycloaddition. All three HSA-conjugated GLP-1 variants (GLP1_16HSA, GLP1_19HSA, and GLP1_28HSA) exhibited comparable serum half-lives in vivo. However, the three GLP1_HSA variants had different in vitro biological activities and in vivo glucose-lowering effects, demonstrating the importance of site-specific HSA conjugation. The platform described herein could be used to develop other therapeutic peptides with extended serum half-lives.

7.
Int J Mol Sci ; 21(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244806

RESUMO

Periodontal diseases are caused by bacterial infection and may progress to chronic dental disease; severe inflammation may result in bone loss. Therefore, it is necessary to prevent bacterial infection or control inflammation. Periodontal ligament fibroblasts (PDLFs) are responsible for the maintenance of tissue integrity and immune and inflammatory events in periodontal diseases. The formation of bacterial complexes by Fusobacterium nucleatum and Porphyromonas gingivalis is crucial in the pathogenesis of periodontal disease. F. nucleatum is a facultative anaerobic species, considered to be a key mediator of dental plaque maturation and aggregation of other oral bacteria. P. gingivalis is an obligate anaerobic species that induces gingival inflammation by secreting virulence factors. In this study, we investigated whether Osmunda japonica extract exerted anti-inflammatory effects in primary PDLFs stimulated by oral pathogens. PDLFs were stimulated with F. nucleatum or P. gingivalis. We showed that pro-inflammatory cytokine (IL-6 and IL-8) expression was induced by LPS or bacterial infection but decreased by treatment with O. japonica extract following bacterial infection. We found that the activation of NF-κB, a transcription factor for pro-inflammatory cytokines, was modulated by O. japonica extract. Thus, O. japonica extract has immunomodulatory activity that can be harnessed to control inflammation.


Assuntos
Infecções Bacterianas/prevenção & controle , Citocinas/antagonistas & inibidores , Fibroblastos/efeitos dos fármacos , Mediadores da Inflamação/antagonistas & inibidores , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Adulto , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Gleiquênias/química , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Ligamento Periodontal/citologia , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/fisiologia
8.
Biotechnol Bioeng ; 117(7): 1961-1969, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32196642

RESUMO

Mussel adhesive proteins (MAPs) have great potential as bioglues, particularly in wet conditions. Although in vivo residue-specific incorporation of 3,4-dihydroxyphenylalanine (Dopa) in tyrosine-auxotrophic Escherichia coli cells allows for production of Dopa-incorporated bioengineered MAPs (dMAPs), the low production yield hinders the practical application of dMAPs. This low production yield of dMAPs is due to low translational activity of a noncanonical amino acid, Dopa, in E. coli cells. Herein, to enhance the production yield of dMAPs, we investigated the coexpression of Dopa-recognizing tyrosyl-tRNA synthetases (TyrRSs). To use the Dopa-specific Methanococcus jannaschii TyrRS (MjTyrRS-Dopa), we altered the anticodon of tyrosyl-tRNA amber suppressor into AUA (MjtRNATyrAUA ) to recognize a tyrosine codon (AUA). Co-overexpression of MjTyrRS-Dopa and MjtRNATyrAUA increased the production yield of Dopa-incorporated MAP foot protein type 3 (dfp-3) by 57%. Similarly, overexpression of E. coli TyrRS (EcTyrRS) led to a 72% higher production yield of dfp-3. Even with coexpression of Dopa-recognizing TyrRSs, dfp-3 has a high Dopa incorporation yield (over 90%) compared to ones prepared without TyrRS coexpression.


Assuntos
Di-Hidroxifenilalanina/genética , Moluscos/genética , Engenharia de Proteínas/métodos , Proteínas/genética , Animais , Códon , Escherichia coli/genética , Methanocaldococcus/genética , Biossíntese de Proteínas
9.
Front Pharmacol ; 11: 599081, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33574753

RESUMO

Excessive bone resorption leads to bone destruction in pathological bone diseases. Osteoporosis, which occurs when osteoclast-mediated bone resorption exceeds osteoblast-mediated bone synthesis, is regarded a global health challenge. Therefore, it is of great importance to identify agents that can regulate the activity of osteoclasts and prevent bone diseases mediated mainly by bone loss. We screened compounds for this purpose and found that 2-(2-chlorophenoxy)-N-[2-(4-propionyl-1piperazinyl) phenyl] acetamide (2-NPPA) exhibited a strong inhibitory effect on osteoclastogenesis. 2-NPPA suppressed the mRNA and protein expression of several osteoclast-specific markers and blocked the formation of mature osteoclasts, reducing the F-actin ring formation and bone resorption activity. In a cell signaling point of view, 2-NPPA exhibited a significant inhibitory effect on the phosphorylation of nuclear factor kappa-B (NF-κB) and c-fos expression in vitro and prevented ovariectomy-induced bone loss in vivo. These findings highlighted the potential of 2-NPPA as a drug for the treatment of bone loss-mediated disorders.

10.
Biomater Sci ; 6(8): 2092-2100, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29881837

RESUMO

Human serum albumin (HSA) has been investigated as a serum half-life extender of therapeutic proteins thanks to its unusually long serum half-life. However, in mice, the serum half-life of a HSA-conjugated protein was much shorter than that of HSA in humans, likely due to the species-dependent nature of albumin-FcRn interactions. Herein, we investigated species-dependent albumin-FcRn interactions using species-matched albumin (mouse serum albumin) and species-mismatched albumin (HSA) in non-transgenic mice. We site-specifically introduced a clickable non-natural amino acid to a target protein followed by conjugation to an albumin species via a hetero-bifunctional linker. Using in vitro binding assays, we showed that both HSA- and MSA-conjugated proteins bound mouse FcRns. Conjugation of HSA led to very limited extension of the serum half-life of sfGFP in mice (16.3 h), compared to that of HSA in transgenic mice harboring an allele of mouse FcRn knock-out and expressing humn FcRn (67 h) reported previously. These results suggest that the FcRn-mediated recycling of HSA is not effective in mice. However, conjugation of mouse serum albumin (MSA) resulted in a serum half-life of sfGFP (27.7 h) comparable to that of MSA in mice (28.8 h). Altogether, our study supported that albumin-FcRn interactions are species dependent in vivo.


Assuntos
Proteínas de Fluorescência Verde/química , Antígenos de Histocompatibilidade Classe I/química , Receptores Fc/química , Albumina Sérica/química , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica
11.
J Lipid Res ; 54(4): 1077-91, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23378600

RESUMO

Glycosylphosphatidylinositol (GPI) enriches GPI-anchored proteins (GPI-AP) in lipid rafts by intimate interaction of its lipid moiety with sphingolipids and cholesterol. In addition to such lipid-lipid interactions, it has been reported that GPI may interact with protein moiety linked to GPI and affect protein conformations because GPI delipidation reduced immunoreactivities of protein. Here, we report that GPI-APs that have not undergone fatty acid remodeling exhibit reduced immunoreactivities in Western blotting, similar to delipidated proteins, compared with normal remodeled GPI-APs. In contrast, immunostaining in flow cytometry and immunoprecipitation did not show significant differences between remodeled and unremodeled GPI-APs. Moreover, detection with premixed primary/secondary antibody complexes or Fab fragments eliminated this difference in Western blotting. These results indicate that normally remodeled GPI enhanced oligomerization of GPI-APs and that inefficient oligomerization of unremodeled GPI-APs was responsible for reduced immunoreactivities. Moreover, the reduction in immunoreactivities of delipidated GPI-APs was most likely caused by the same effect. Finally, by chemical cross-linking of surface proteins in living cells and cell killing assay using a pore-forming bacterial toxin, we showed that enhanced oligomerization by GPI-remodeling occurs under a physiological membrane environment. Thus, this study clarifies the significance of GPI fatty acid remodeling in oligomerization of GPI-APs and provides useful information for technical studies of these cell components.


Assuntos
Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Animais , Imunoprecipitação , Microdomínios da Membrana , Camundongos , Camundongos Knockout , Multimerização Proteica
12.
J Microbiol ; 47(2): 214-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19412607

RESUMO

It has been known that ornithine decarboxylase (ODC) induced by the binding of c-Myc to odc gene is closely linked to cell death. Here, we investigated the relationship between their expressions and cell death in macrophage cells following treatment with Salmonella typhimurium or lipopolysaccharide (LPS). ODC expression was increased by bacteria or LPS and repressed by inhibitors against mitogen-activated protein kinases (MAPKs) in Toll-like receptor 4 (TLR4) signaling pathway. In contrast, c-Myc protein level was increased after treatment with bacteria, but not by treatment with LPS or heat-killed bacteria although both bacteria and LPS increased the levels of c-myc mRNA to a similar extent. c-Myc protein level is dependent upon bacterial invasion because treatment with cytochalasin D (CCD), inhibitors of endocytosis, decreased c-Myc protein level. The cell death induced by bacteria was significantly decreased after treatment of CCD or c-Myc inhibitor, indicating that cell death by S. typhimurium infection is related to c-Myc, but not ODC. Consistent with this conclusion, treatment with bacteria mutated to host invasion did not increase c-Myc protein level and cell death rate. Taken together, it is suggested that induction of c-Myc by live bacterial infection is directly related to host cell death.


Assuntos
Expressão Gênica , Macrófagos/citologia , Proteínas Proto-Oncogênicas c-myc/genética , Infecções por Salmonella/genética , Salmonella typhimurium/fisiologia , Animais , Morte Celular , Células Cultivadas , Macrófagos/microbiologia , Camundongos , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Infecções por Salmonella/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA