Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 62(17): 2549-2558, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37582191

RESUMO

The amyloid ß peptide aggregates to form extracellular plaques in the brains of Alzheimer's disease patients. Certain of its fragments have been found to have similar properties to those of the full-length peptide. The best-studied of these is 25-35, which aggregates into fibrils, is toxic to neurons, and forms ion channels in synthetic lipid bilayers. Here, we investigate possible pore-forming structures of oligomers of this peptide in a POPC/POPG membrane. We consider octameric and decameric ß-barrels of different topology, strand orientation, and shear, evaluate their stability in an implicit membrane model, and subject the best models to multimicrosecond all-atom molecular dynamics simulations. We find two decameric structures that are kinetically stable in membranes on this time scale: an imperfectly closed antiparallel ß-barrel with K28 in the pore lumen and a short parallel ß-barrel with K28 toward the membrane interface. Both structures exhibit dehydrated gaps in the pore lumen, which are larger for the antiparallel barrel. Based on these results, the experimental cation selectivity, the dependence of ion channel activity on voltage direction, and certain mutation data, the parallel model seems more compatible with experimental data.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Amiloide/química
2.
ACS Chem Neurosci ; 14(1): 99-110, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36525690

RESUMO

Perturbation of cell membranes by amyloid ß (Ab) peptide oligomers is one possible mechanism of cytotoxicity in Alzheimer's disease, but the structure of such Ab-membrane complexes is unknown. Here we examine the stability of several putative structures by implicit membrane and all-atom molecular dynamics simulations. The structures include (a) a variety of models proposed by other researchers in the past, (b) a heptameric ß barrel determined by grafting the Ab sequence onto α-hemolysin, (c) a similar structure with modified strand orientation and turn location based on an experimental ß-hairpin structure, (d) oligomers inserting C-terminal ß hairpins into one leaflet of the bilayer, (e) oligomers forming parallel C-terminal ß barrels, and (f) a helical hexamer made of C-terminal fragments. The α-hemolysin-grafted structure and its alternately oriented variant are stable in the membrane and form an aqueous pore. In contrast, the C-terminal parallel barrels are not stable, presumably due to excessive hydrophobicity of their inner surface. The helical hexamer also failed to stabilize an aqueous pore for the same reason. The C-terminal hairpin-inserting structures remain stably inserted but, again, do not form an aqueous pore. Our results suggest that only ß-barrels inserting a combination of C-terminal and other residues can form stable aqueous pores.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Proteínas Hemolisinas/análise , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Amiloide/análise
3.
J Chem Phys ; 157(8): 085101, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36050014

RESUMO

Acid ionization constants (pKa's) of titratable amino acid side chains have received a large amount of experimental and theoretical attention. In many situations, however, the rates of protonation and deprotonation, kon and koff, may also be important, for example, in understanding the mechanism of action of proton channels or membrane proteins that couple proton transport to other processes. Protonation and deprotonation involve the making and breaking of covalent bonds, which cannot be studied by classical force fields. However, environment effects on the rates should be captured by such methods. Here, we present an approach for estimating deprotonation rates based on Warshel's extension of Marcus's theory of electron transfer, with input from molecular simulations. The missing bond dissociation energy is represented by a constant term determined by fitting the pKa value in solution. The statistics of the energy gap between protonated and deprotonated states is used to compute free energy curves of the two states and, thus, free energy barriers, from which the rate can be deduced. The method is applied to Glu, Asp, and His in bulk solution and select membrane proteins: the M2 proton channel, bacteriorhodopsin, and cytochrome c oxidase.


Assuntos
Bacteriorodopsinas , Prótons , Aminoácidos , Ácido Aspártico/química , Bacteriorodopsinas/química , Concentração de Íons de Hidrogênio , Cinética
4.
J Chem Inf Model ; 61(9): 4645-4655, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34499498

RESUMO

Islet amyloid polypeptide (IAPP, also known as amylin) is a peptide hormone that is co-secreted with insulin by pancreatic ß-cells and forms amyloid aggregates in type II diabetes. Various lines of evidence indicate that oligomers of this peptide may induce toxicity by disrupting or forming pores in cell membranes, but the structure of these pores is unknown. Here, we create models of pores for both helical and ß-structured peptides using implicit membrane modeling and test their stability using multimicrosecond all-atom simulations. We find that the helical peptides behave similarly to antimicrobial peptides; they remain stably inserted in a highly tilted or partially unfolded configuration creating a narrow water channel. Parallel helix orientation creates a somewhat larger pore. An octameric ß barrel of parallel ß-hairpins is highly stable in the membrane, whereas the corresponding barrel made of antiparallel hairpins is not. We propose that certain experiments probe the helical pore state while others probe the ß-structured pore state; this provides a possible explanation for lack of correlation that is sometimes observed between in vivo toxicity and in vitro liposome permeabilization experiments.


Assuntos
Diabetes Mellitus Tipo 2 , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Amiloide , Membrana Celular , Humanos , Insulina , Polipeptídeo Amiloide das Ilhotas Pancreáticas/toxicidade
5.
Structure ; 29(12): 1440-1452.e4, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34520736

RESUMO

The membrane sculpting ability of BAR domains has been attributed to the intrinsic curvature of their banana-shaped dimeric structure. However, there is often a mismatch between this intrinsic curvature and the diameter of the membrane tubules generated. I-BAR domains are especially mysterious since they are almost flat but generate high negative membrane curvature. Here, we use atomistic implicit-solvent computer modeling to show that the membrane bending of the IRSp53 I-BAR domain is dictated by its higher oligomeric structure, whose curvature is completely unrelated to the intrinsic curvature of the dimer. Two other I-BARs give similar results, whereas a flat F-BAR sheet develops a concave membrane-binding interface, consistent with its observed positive membrane curvature generation. Laterally interacting helical spirals of I-BAR dimers on tube interiors are stable and have an enhanced binding energy that is sufficient for membrane bending to experimentally observed tubule diameters at a reasonable surface density.


Assuntos
Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Simulação por Computador , Humanos
6.
Biophys J ; 120(8): 1357-1366, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33617834

RESUMO

The actinoporins are cytolytic toxins produced by sea anemones. Upon encountering a membrane, preferably containing sphingomyelin, they oligomerize and insert their N-terminal helix into the membrane, forming a pore. Whether sphingomyelin is specifically recognized by the protein or simply induces phase coexistence in the membrane has been debated. Here, we perform multi-microsecond molecular dynamics simulations of an octamer of fragaceatoxin C, a member of the actinoporin family, in lipid bilayers containing either pure 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or a 1:1 mixture of DOPC and palmitoyl sphingomyelin (PSM). The complex is highly stable in both environments, with only slight fraying of the inserted helices near their N-termini. Analyzing the structural parameters of the mixed membrane in the course of the simulation, we see signs of a phase transition for PSM in the inner leaflet of the bilayer. In both leaflets, cross-interactions between lipids of different type decrease over time. Surprisingly, the aromatic loop thought to be responsible for sphingomyelin recognition interacts more with DOPC than PSM by the end of the simulation. These results support the notion that the key membrane property that actinoporins recognize is lipid phase coexistence.


Assuntos
Anêmonas-do-Mar , Animais , Bicamadas Lipídicas
7.
Protein Sci ; 29(6): 1473-1485, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32142182

RESUMO

Certain proteins have the propensity to bind to negatively curved membranes and generate negative membrane curvature. The mechanism of action of these proteins is much less studied and understood than those that sense and generate positive curvature. In this work, we use implicit membrane modeling to explore the mechanism of an important negative curvature sensing and generating protein: the main ESCRT III subunit Snf7. We find that Snf7 monomers alone can sense negative curvature and that curvature sensitivity increases for dimers and trimers. We have observed spontaneous bending of Snf7 oligomers into circular structures with preferred radius of ~20 nm. The preferred curvature of Snf7 filaments is further confirmed by the simulations of preformed spirals on a cylindrical membrane surface. Snf7 filaments cannot bind with the same interface to flat and curved membranes. We find that even when a filament has the preferred radius, it is always less stable on the flat membrane surface than on the interior cylindrical membrane surface. This provides an additional energy for membrane bending which has not been considered in the spiral spring model. Furthermore, the rings on the cylindrical spirals are bridged together by helix 4 and hence are extra stabilized compared to the spirals on the flat membrane surface.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/química , Subunidades Proteicas/química , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Eletricidade Estática
8.
Biophys J ; 118(8): 1901-1913, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32183940

RESUMO

Pore formation by membrane-active peptides, naturally encountered in innate immunity and infection, could have important medical and technological applications. Recently, the well-studied lytic peptide melittin has formed the basis for the development of combinatorial libraries from which potent pore-forming peptides have been derived, optimized to work under different conditions. We investigate three such peptides, macrolittin70, which is most active at neutral pH; pHD15, which is active only at low pH; and MelP5_Δ6, which was rationally designed to be active at low pH but formed only small pores. There are three, six, and six acidic residues in macrolittin70, pHD15, and MelP5_Δ6, respectively. We perform multi-microsecond simulations in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) of hexamers of these peptides starting from transmembrane orientations at neutral pH (all residues at standard protonation), low pH (acidic residues and His protonated), and highly acidic environments in which C-termini are also protonated. Previous simulations of the parent peptides melittin and MelP5 in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) are repeated in POPC. We find that the most potent pore-forming peptides exhibit strong interpeptide interactions, including salt bridges, H-bonds, and polar interactions. Protonation of the C-terminus promotes helicity and pore size. The proximity of the peptides allows fewer lipid headgroups to line the pores than in previous simulations, making the pores intermediate between barrel stave and toroidal. Based on these structures and geometrical arguments, we attempt to rationalize the factors that under different conditions can increase or decrease pore stability and propose mutations that could be tested experimentally.


Assuntos
Bicamadas Lipídicas , Meliteno , Concentração de Íons de Hidrogênio , Membranas , Peptídeos
9.
J Exp Bot ; 69(20): 4907-4919, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-29955860

RESUMO

The H2A.Z histone variant plays a role in the modulation of environmental responses, but the nature of the associated mechanisms remains enigmatic. We investigated global H2A.Z deposition and transcriptomic changes in rice (Oryza sativa) upon exposure to phosphate (Pi) deficiency and in response to RNAi knockdown of OsARP6, which encodes a key component of the H2A.Z exchange complex. Both Pi deficiency and OsARP6-knockdown resulted in similar, profound effects on global H2A.Z distribution. H2A.Z in the gene body of stress-responsive genes was negatively correlated with gene expression, and this was more apparent in response to Pi deficiency. In contrast, the role of H2A.Z at the transcription start site (TSS) was more context dependent, acting as a repressor of some stress-responsive genes, but an activator of some genes with housekeeping functions. This was especially evident upon OsARP6-knockdown, which resulted in down-regulation of a number of genes linked to chloroplast function that contained decreases in H2A.Z at the TSS. Consistently, OsARP6-RNAi plants exhibited lower chlorophyll content relative to the wild-type. Our results demonstrate that gene body-localized H2A.Z plays a prominent role in repressing stress-responsive genes under non-inductive conditions, whereas H2A.Z at the TSS functions as a positive or negative regulator of transcription.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Histonas/genética , Oryza/genética , Proteínas de Plantas/genética , Genes Essenciais/genética , Histonas/metabolismo , Nutrientes/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo
10.
J Chem Phys ; 148(14): 144312, 2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29655353

RESUMO

We measured the nucleation rates of n-pentane through n-heptane in a supersonic nozzle at temperatures ranging from ca. 109 K to 168 K. For n-pentane and n-hexane, these are the first nucleation rate measurements that have been made, and the trends in the current data agree well with those in the earlier work of Ghosh et al. [J. Chem. Phys. 132, 024307 (2010)] for longer chain alkanes. Complementary Monte Carlo simulations, using the transferable potentials for phase equilibria-united atom potentials, suggest that despite the high degree of supercooling, the critical clusters remain liquid like under experimental conditions for n-pentane through n-heptane, but adopt more ordered structures for n-octane and n-nonane. For all three alkanes, the experimental and simulated nucleation rates are offset by ∼3 orders of magnitude when plotted as a function of ln S/(Tc/T - 1)1.5. Explicitly accounting for the surface tension difference between the real and model substances, or alternatively using the Hale [Phys. Rev. A 33, 4156 (1986); Metall. Mater. Trans. A 23, 1863 (1992)] scaling parameter, Ω, consistent with the model potential, increases the offset to ∼6 orders of magnitude.

11.
J Chem Theory Comput ; 13(9): 4043-4053, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28715186

RESUMO

The Jacobian-Gaussian method, which has recently been developed for generating bending angle trials, is extended to the conformational sampling of inner segments of a long chain or cyclic molecule where regular configurational-bias Monte Carlo was found to be very inefficient or simply incapable (i.e., for the cyclic case). For these molecules, a new conformational move would be required where one interior section is relocated while the rest of the molecule, before and after this section, is fixed. Techniques have been developed to extend the regular configurational-bias Monte Carlo to such a fixed-end points case by introducing a biasing probability function. Each trial is weighted by this function to ensure the closure of the molecule by selecting appropriate growth direction. However, the acceptance rate might be reduced significantly due to the incongruity of this weight and the energy weight. In addition, the last steps of closing the molecule include several bending and torsional energies that are coupled to each other. Thus, generating a trial that is acceptable for all energetic terms becomes a difficult problem. The Jacobian-Gaussian method can overcome these two problems with the following two principles: First, basic geometrical constraints must be fulfilled to guarantee molecular closure, which avoids the need of the biasing probability function. Second, the growth variables are transformed into those used explicitly in expressing the various intramolecular energies between fixed points to allow for the trials to be generated directly according to the Boltzmann distributions of these energetic terms, which improves the acceptance rates dramatically. This method has been examined on the growth of inner segments of linear and cyclic alkanes, which proves its higher efficiency over that of traditional methods.

12.
J Chem Theory Comput ; 13(4): 1577-1583, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28296397

RESUMO

A new method, called Jacobian-Gaussian scheme, has been developed to overcome the challenge of bending angle generation for linear and branched molecules in configurational-bias Monte Carlo. This method is simple, general, fast, and robust which can yield high acceptance rates. Since there are several bending angles in a branched point and their energies are coupled to each other, generating one trial that is acceptable for all energetic terms is a difficult problem. In order to reach reasonable acceptance rates, traditional methods either generate many trials uniformly or use prepared tables to generate trials according to the expected distribution. While the former consumes a considerable amount of simulation time, the later needs a modest amount of memory to store the tabulated distribution information. In contrast, this Jacobian-Gaussian scheme decouples the energetic terms through simple variable transformations and then generates each bending angle according to its Boltzmann distribution. Thus, high acceptance rates can be obtained using only a few trials without requirement for generation and storage of distribution data. This method has been shown to be efficient for various molecular types including propane, 2-methylpropane, 2,2-dimethylpropane, and acetone.

13.
J Chem Theory Comput ; 11(9): 4023-32, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26575898

RESUMO

Reformulation of existing Monte Carlo algorithms used in the study of grand canonical systems has yielded massive improvements in efficiency. Here we present an energy biasing scheme designed to address targeting issues encountered in particle swap moves using sophisticated algorithms such as the Aggregation-Volume-Bias and Unbonding-Bonding methods. Specifically, this energy biasing scheme allows a particle to be inserted to (or removed from) a region that is more acceptable. As a result, this new method showed a several-fold increase in insertion/removal efficiency in addition to an accelerated rate of convergence for the thermodynamic properties of the system.

14.
J Chem Phys ; 141(7): 074102, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25149770

RESUMO

A new method has been developed to generate bending angle trials to improve the acceptance rate and the speed of configurational-bias Monte Carlo. Whereas traditionally the trial geometries are generated from a uniform distribution, in this method we attempt to use the exact probability density function so that each geometry generated is likely to be accepted. In actual practice, due to the complexity of this probability density function, a numerical representation of this distribution function would be required. This numerical table can be generated a priori from the distribution function. This method has been tested on a united-atom model of alkanes including propane, 2-methylpropane, and 2,2-dimethylpropane, that are good representatives of both linear and branched molecules. It has been shown from these test cases that reasonable approximations can be made especially for the highly branched molecules to reduce drastically the dimensionality and correspondingly the amount of the tabulated data that is needed to be stored. Despite these approximations, the dependencies between the various geometrical variables can be still well considered, as evident from a nearly perfect acceptance rate achieved. For all cases, the bending angles were shown to be sampled correctly by this method with an acceptance rate of at least 96% for 2,2-dimethylpropane to more than 99% for propane. Since only one trial is required to be generated for each bending angle (instead of thousands of trials required by the conventional algorithm), this method can dramatically reduce the simulation time. The profiling results of our Monte Carlo simulation code show that trial generation, which used to be the most time consuming process, is no longer the time dominating component of the simulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA