Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 206(5): e0003524, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38695522

RESUMO

Vibrio (Aliivibrio) fischeri's initial rise to fame derived from its alluring production of blue-green light. Subsequent studies to probe the mechanisms underlying this bioluminescence helped the field discover the phenomenon now known as quorum sensing. Orthologs of quorum-sensing regulators (i.e., LuxR and LuxI) originally identified in V. fischeri were subsequently uncovered in a plethora of bacterial species, and analogous pathways were found in yet others. Over the past three decades, the study of this microbe has greatly expanded to probe the unique role of V. fischeri as the exclusive symbiont of the light organ of the Hawaiian bobtail squid, Euprymna scolopes. Buoyed by this optically amenable host and by persistent and insightful researchers who have applied novel and cross-disciplinary approaches, V. fischeri has developed into a robust model for microbe-host associations. It has contributed to our understanding of how bacteria experience and respond to specific, often fluxing environmental conditions and the mechanisms by which bacteria impact the development of their host. It has also deepened our understanding of numerous microbial processes such as motility and chemotaxis, biofilm formation and dispersal, and bacterial competition, and of the relevance of specific bacterial genes in the context of colonizing an animal host. Parallels in these processes between this symbiont and bacteria studied as pathogens are readily apparent, demonstrating functional conservation across diverse associations and permitting a reinterpretation of "pathogenesis." Collectively, these advances built a foundation for microbiome studies and have positioned V. fischeri to continue to expand the frontiers of our understanding of the microbial world inside animals.


Assuntos
Aliivibrio fischeri , Decapodiformes , Percepção de Quorum , Aliivibrio fischeri/genética , Aliivibrio fischeri/fisiologia , Animais , Decapodiformes/microbiologia , Simbiose , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Interações entre Hospedeiro e Microrganismos
2.
bioRxiv ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260499

RESUMO

Bacteria employ antagonistic strategies to eliminate competitors of an ecological niche. Contact-dependent mechanisms, such as the type VI secretion system (T6SS), are prevalent in host-associated bacteria, yet we know relatively little about how T6SS+ strains make contact with competitors in highly viscous environments, such as host mucus. To better understand how cells respond to and contact one another in such environments, we performed a genome-wide transposon mutant screen of the T6SS-wielding beneficial bacterial symbiont, Vibrio fischeri, and identified two sets of genes that are conditionally required for killing. LPS/capsule and flagellar-associated genes do not affect T6SS directly and are therefore not required for interbacterial killing when cell contact is forced yet are necessary for killing in high-viscosity liquid (hydrogel) where cell-cell contact must be biologically mediated. Quantitative transcriptomics revealed that V. fischeri significantly increases expression of both T6SS genes and cell surface modification factors upon transition from low- to high-viscosity media. Consistent with coincubation and fluorescence microscopy data, flagella are not required for T6SS expression in hydrogel. However, flagella play a key role in responding to the physical environment by promoting expression of the surface modification genes identified in our screen, as well as additional functional pathways important for host colonization including uptake of host-relevant iron and carbon sources, and nitric oxide detoxification enzymes. Our findings suggest that flagella may act as a mechanosensor for V. fischeri to coordinately activate competitive strategies and host colonization factors, underscoring the significance of the physical environment in directing complex bacterial behaviors.

3.
Proc Natl Acad Sci U S A ; 120(39): e2307638120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722052

RESUMO

Photosynthetic carbon (C) fixation by phytoplankton in the Southern Ocean (SO) plays a critical role in regulating air-sea exchange of carbon dioxide and thus global climate. In the SO, photosynthesis (PS) is often constrained by low iron, low temperatures, and low but highly variable light intensities. Recently, proton-pumping rhodopsins (PPRs) were identified in marine phytoplankton, providing an alternate iron-free, light-driven source of cellular energy. These proteins pump protons across cellular membranes through light absorption by the chromophore retinal, and the resulting pH energy gradient can then be used for active membrane transport or for synthesis of adenosine triphosphate. Here, we show that PPR is pervasive in Antarctic phytoplankton, especially in iron-limited regions. In a model SO diatom, we found that it was localized to the vacuolar membrane, making the vacuole a putative alternative phototrophic organelle for light-driven production of cellular energy. Unlike photosynthetic C fixation, which decreases substantially at colder temperatures, the proton transport activity of PPR was unaffected by decreasing temperature. Cellular PPR levels in cultured SO diatoms increased with decreasing iron concentrations and energy production from PPR photochemistry could substantially augment that of PS, especially under high light intensities, where PS is often photoinhibited. PPR gene expression and high retinal concentrations in phytoplankton in SO waters support its widespread use in polar environments. PPRs are an important adaptation of SO phytoplankton to growth and survival in their cold, iron-limited, and variable light environment.


Assuntos
Diatomáceas , Rodopsina , Rodopsina/genética , Fitoplâncton/genética , Prótons , Regiões Antárticas , Transporte de Íons , Diatomáceas/genética
4.
PNAS Nexus ; 2(7): pgad195, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37441614

RESUMO

The type VI secretion system (T6SS) is a broadly distributed interbacterial weapon that can be used to eliminate competing bacterial populations. Although unarmed target populations are typically used to study T6SS function in vitro, bacteria most likely encounter other T6SS-armed competitors in nature. However, the connection between subcellular details of the T6SS and the outcomes of such mutually lethal battles is not well understood. Here, we incorporate biological data derived from natural competitors of Vibrio fischeri light organ symbionts to build a biochemical model for T6SS at the single-cell level, which we then integrate into an agent-based model (ABM). Using the ABM, we isolate and experiment with strain-specific physiological differences between competitors in ways not possible with biological samples to identify winning strategies for T6SS-armed populations. Through in vitro experiments, we discover that strain-specific differences exist in T6SS activation speed. ABM simulations corroborate that faster activation is dominant in determining survival during competition. Once competitors are fully activated, the energy required for T6SS creates a tipping point where increased weapon building and firing becomes too costly to be advantageous. Through ABM simulations, we identify the threshold where this transition occurs in the T6SS parameter space. We also find that competitive outcomes depend on the geometry of the battlefield: unarmed target cells survive at the edges of a range expansion where unlimited territory can be claimed. Alternatively, competitions within a confined space, much like the light organ crypts where natural V. fischeri compete, result in the rapid elimination of the unarmed population.

5.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945377

RESUMO

The type VI secretion system (T6SS) is an interbacterial weapon composed of thousands of protein subunits and predicted to require significant cellular energy to deploy, yet a fitness cost from T6SS use is rarely observed. Here, we identify host-like conditions where the T6SS incurs a fitness cost using the beneficial symbiont, Vibrio fischeri, which uses its T6SS to eliminate competitors in the natural squid host. We hypothesized that a fitness cost for the T6SS could be dependent on the cellular energetic state and used theoretical ATP cost estimates to predict when a T6SS-dependent fitness cost may be apparent. Theoretical energetic cost estimates predicted a minor relative cost for T6SS use in fast-growing populations (0.4-0.45% of total ATP used cell-1), and a higher relative cost (3.1-13.6%) for stationary phase cells. Consistent with these predictions, we observed no significant T6SS-dependent fitness cost for fast-growing populations typically used for competition assays. However, the stationary phase cell density was significantly lower in the wild-type strain, compared to a regulator mutant that does not express the T6SS, and this T6SS-dependent fitness cost was between 11 and 23%. Such a fitness cost could influence the prevalence and biogeography of T6SSs in animal-associated bacteria. While the T6SS may be required in kill or be killed scenarios, once the competitor is eliminated there is no longer selective pressure to maintain the weapon. Our findings indicate an evolved genotype lacking the T6SS would have a growth advantage over its parent, resulting in the eventual dominance of the unarmed population.

6.
Microbiol Spectr ; 10(6): e0139722, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453912

RESUMO

Bacteria use a variety of strategies to exclude competitors from accessing resources, including space within a host niche. Because these mechanisms are typically costly to deploy, they are often tightly regulated for use in environments where the benefits outweigh the energetic cost. The type VI secretion system (T6SS) is a competitive mechanism that allows inhibitors to kill competing microbes by physically puncturing and translocating cytotoxic effectors directly into neighboring competitor cells. Although T6SSs are encoded in both symbiotic and free-living taxa where they may be actively secreting into the extracellular milieu during growth in liquid culture, there is little evidence for bacteria engaging in T6SS-mediated, contact-dependent killing under low-viscosity liquid conditions. Here, we determined that calcium acts as a pH-dependent cue to activate the assembly of an antibacterial T6SS in a Vibrio fischeri light organ symbiont in a low-viscosity liquid medium. Moreover, competing V. fischeri isolates formed mixed-strain aggregates that promoted the contact necessary for T6SS-dependent elimination of a target population. Our findings expand our knowledge of V. fischeri T6SS ecology and identify a low-viscosity liquid condition where cells engage in contact-dependent killing. IMPORTANCE Microbes deploy competitive mechanisms to gain access to resources such as nutrients or space within an ecological niche. Identifying when and where these strategies are employed can be challenging given the complexity and variability of most natural systems; therefore, studies evaluating specific cues that conditionally regulate interbacterial competition can inform the ecological context for such competition. In this work, we identified a pH-dependent chemical cue in seawater, calcium, which promotes activation of a contact-dependent interbacterial weapon in the marine symbiont Vibrio fischeri. This finding underscores the importance of using ecologically relevant salts in growth media and the ability of bacterial cells to sense and integrate multiple environmental cues to assess the need for a weapon. Identification of these cues provides insight into the types of environments where employing a weapon is advantageous to the survival and propagation of a bacterial population.


Assuntos
Cálcio , Sistemas de Secreção Tipo VI , Regulação Bacteriana da Expressão Gênica , Sistemas de Secreção Tipo VI/metabolismo , Simbiose , Aliivibrio fischeri/metabolismo , Proteínas de Bactérias/genética
7.
Front Microbiol ; 13: 988044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187973

RESUMO

The type VI secretion system (T6SS) is widely distributed in diverse bacterial species and habitats where it is required for interbacterial competition and interactions with eukaryotic cells. Previous work described the role of a T6SS in the beneficial symbiont, Vibrio fischeri, during colonization of the light organ of Euprymna scolopes squid. However, the prevalence and diversity of T6SSs found within the distinct symbiotic structures of this model host have not yet been determined. Here, we analyzed 73 genomes of isolates from squid light organs and accessory nidamental glands (ANGs) and 178 reference genomes. We found that the majority of these bacterial symbionts encode diverse T6SSs from four distinct classes, and most share homology with T6SSs from more distantly related species, including pathogens of animals and humans. These findings indicate that T6SSs with shared evolutionary histories can be integrated into the cellular systems of host-associated bacteria with different effects on host health. Furthermore, we found that one T6SS in V. fischeri is located within a genomic island with high genomic plasticity. Five distinct genomic island genotypes were identified, suggesting this region encodes diverse functional potential that natural selection can act on. Finally, analysis of newly described T6SSs in roseobacter clade ANG isolates revealed a novel predicted protein that appears to be a fusion of the TssB-TssC sheath components. This work underscores the importance of studying T6SSs in diverse organisms and natural habitats to better understand how T6SSs promote the propagation of bacterial populations and impact host health.

8.
mBio ; 13(2): e0308521, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35404117

RESUMO

Interbacterial competition is prevalent in host-associated microbiota, where it can shape community structure and function, impacting host health in both positive and negative ways. However, the factors that permit bacteria to discriminate among their various neighbors for targeted elimination of competitors remain elusive. We identified a putative lipoprotein (TasL) in Vibrio species that mediates cell-cell attachment with a subset of target strains, allowing inhibitors to target specific competitors for elimination. Here, we describe this putative lipoprotein, which is associated with the broadly distributed type VI secretion system (T6SS), by studying symbiotic Vibrio fischeri, which uses the T6SS to compete for colonization sites in their squid host. We demonstrate that TasL allows V. fischeri cells to restrict T6SS-dependent killing to certain genotypes by selectively integrating competitor cells into aggregates while excluding other cell types. TasL is also required for T6SS-dependent competition within juvenile squid, indicating that the adhesion factor is active in the host. Because TasL homologs are found in other host-associated bacterial species, this newly described cell-cell attachment mechanism has the potential to impact microbiome structure within diverse hosts. IMPORTANCE T6SSs are broadly distributed interbacterial weapons that share an evolutionary history with bacteriophage. Because the T6SS can be used to kill neighboring cells, it can impact the spatial distribution and biological function of both free-living and host-associated microbial communities. Like their phage relatives, T6SS+ cells must sufficiently bind competitor cells to deliver their toxic effector proteins through the syringe-like apparatus. Although phage use receptor-binding proteins (RBPs) and tail fibers to selectively bind prey cells, the biophysical properties that mediate this cell-cell contact for T6SS-mediated killing remain unknown. Here, we identified a large, predicted lipoprotein that is coordinately expressed with T6SS proteins and facilitates the contact that is necessary for the T6SS-dependent elimination of competitors in a natural host. Similar to phage RBPs and tail fibers, this lipoprotein is required for T6SS+ cells to discriminate between prey and nonprey cell types, revealing new insight into prey selection during T6SS-mediated competition.


Assuntos
Sistemas de Secreção Tipo VI , Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Animais , Decapodiformes/microbiologia , Lipoproteínas/genética , Simbiose , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo
9.
ISME Commun ; 2(1): 97, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37938401

RESUMO

Southern Ocean (SO) diatoms play an important role in global carbon flux, and their influence on carbon export is directly linked to interactions with epiphytic bacteria. Bacterial symbionts that increase diatom growth promote atmospheric carbon uptake, while bacterial degraders divert diatom biomass into the microbial loop where it can then be released as carbon dioxide through respiration. To further explore SO diatom-bacterial associations, a natural model system is needed that is representative of these diverse and important interactions. Here, we use concurrent cultivation to isolate a species of the ecologically-important SO diatom, Pseudo-nitzschia subcurvata, and its co-occurring bacteria. Although vitamin-depleted, axenic Pseudo-nitzschia grew poorly in culture, addition of a co-isolated Roseobacter promoted diatom growth, while addition of a co-isolated Flavobacterium negatively impacted diatom growth. Microscopy revealed both bacterial isolates are physically associated with diatom cells and genome sequencing identified important predicted functions including vitamin synthesis, motility, cell attachment mechanisms, and diverse antimicrobial weapons that could be used for interbacterial competition. These findings revealed the natural coexistence of competing symbiotic strategies of diatom-associated bacteria in the SO, and the utility of this tripartite system, composed of a diatom and two bacterial strains, as a co-culture model to probe ecological-relevant interactions between diatoms and the bacteria that compete for access to the phycosphere.

10.
mBio ; 12(5): e0203421, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34607467

RESUMO

The marine bacterium Vibrio fischeri efficiently colonizes its symbiotic squid host, Euprymna scolopes, by producing a transient biofilm dependent on the symbiosis polysaccharide (SYP). In vitro, however, wild-type strain ES114 fails to form SYP-dependent biofilms. Instead, genetically engineered strains, such as those lacking the negative regulator BinK, have been developed to study this phenomenon. Historically, V. fischeri has been grown using LBS, a complex medium containing tryptone and yeast extract; supplementation with calcium is required to induce biofilm formation by a binK mutant. Here, through our discovery that yeast extract inhibits biofilm formation, we uncover signals and underlying mechanisms that control V. fischeri biofilm formation. In contrast to its inability to form a biofilm on unsupplemented LBS, a binK mutant formed cohesive, SYP-dependent colony biofilms on tTBS, modified LBS that lacks yeast extract. Moreover, wild-type strain ES114 became proficient to form cohesive, SYP-dependent biofilms when grown in tTBS supplemented with both calcium and the vitamin para-aminobenzoic acid (pABA); neither molecule alone was sufficient, indicating that this phenotype relies on coordinating two cues. pABA/calcium supplementation also inhibited bacterial motility. Consistent with these phenotypes, cells grown in tTBS with pABA/calcium were enriched in transcripts for biofilm-related genes and predicted diguanylate cyclases, which produce the second messenger cyclic-di-GMP (c-di-GMP). They also exhibited elevated levels of c-di-GMP, which was required for the observed phenotypes, as phosphodiesterase overproduction abrogated biofilm formation and partially rescued motility. This work thus provides insight into conditions, signals, and processes that promote biofilm formation by V. fischeri. IMPORTANCE Bacteria integrate environmental signals to regulate gene expression and protein production to adapt to their surroundings. One such behavioral adaptation is the formation of a biofilm, which can promote adherence and colonization and provide protection against antimicrobials. Identifying signals that trigger biofilm formation and the underlying mechanism(s) of action remain important and challenging areas of investigation. Here, we determined that yeast extract, commonly used for growth of bacteria in laboratory culture, inhibits biofilm formation by Vibrio fischeri, a model bacterium used for investigating host-relevant biofilm formation. Omitting yeast extract from the growth medium led to the identification of an unusual signal, the vitamin para-aminobenzoic acid (pABA), that when added together with calcium could induce biofilm formation. pABA increased the concentrations of the second messenger, c-di-GMP, which was necessary but not sufficient to induce biofilm formation. This work thus advances our understanding of signals and signal integration controlling bacterial biofilm formation.


Assuntos
Ácido 4-Aminobenzoico/metabolismo , Aliivibrio fischeri/metabolismo , Biofilmes , Cálcio/metabolismo , GMP Cíclico/análogos & derivados , Polissacarídeos Bacterianos/metabolismo , Aliivibrio fischeri/genética , Aliivibrio fischeri/crescimento & desenvolvimento , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Decapodiformes/microbiologia , Decapodiformes/fisiologia , Regulação Bacteriana da Expressão Gênica , Simbiose
11.
J Vis Exp ; (175)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34542540

RESUMO

Interbacterial competition can directly impact the structure and function of microbiomes. This work describes a fluorescence microscopy approach that can be used to visualize and quantify competitive interactions between different bacterial strains at the single-cell level. The protocol described here provides methods for advanced approaches in slide preparation on both upright and inverted epifluorescence microscopes, live-cell and time-lapse imaging techniques, and quantitative image analysis using the open-source software FIJI. The approach in this manuscript outlines the quantification of competitive interactions between symbiotic Vibrio fischeri populations by measuring the change in area over time for two coincubated strains that are expressing different fluorescent proteins from stable plasmids. Alternative methods are described for optimizing this protocol in bacterial model systems that require different growth conditions. Although the assay described here uses conditions optimized for V. fischeri, this approach is highly reproducible and can easily be adapted to study competition among culturable isolates from diverse microbiomes.


Assuntos
Aliivibrio fischeri , Simbiose , Microscopia de Fluorescência , Imagem Óptica , Plasmídeos
12.
J Bacteriol ; 203(21): e0039921, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34370559

RESUMO

Bacteria have evolved diverse strategies to compete for a niche, including the type VI secretion system (T6SS), a contact-dependent killing mechanism. T6SSs are common in bacterial pathogens, commensals, and beneficial symbionts, where they affect the diversity and spatial structure of host-associated microbial communities. Although T6SS gene clusters are often located on genomic islands (GIs), which may be transferred as a unit, the regulatory strategies that promote gene expression once the T6SS genes are transferred into a new cell are not known. We used the squid symbiont Vibrio fischeri to identify essential regulatory factors that control expression of a strain-specific T6SS encoded on a GI. We found that a transcriptional reporter for this T6SS is active only in strains that contain the T6SS-encoding GI, suggesting the GI encodes at least one essential regulator. A transposon screen identified seven mutants that could not activate the reporter. These mutations mapped exclusively to three genes on the T6SS-containing GI that encode two essential structural proteins (a TssA-like protein and TssM) and a transcriptional regulator (TasR). Using T6SS reporters, reverse transcription-PCR (RT-PCR), competition assays, and differential proteomics, we found that all three genes are required for expression of many T6SS components, except for the TssA-like protein and TssM, which are constitutively expressed. Based on these findings, we propose a model whereby T6SS expression requires conserved structural proteins, in addition to the essential regulator TasR, and this ability to self-regulate may be a strategy to activate T6SS expression upon transfer of T6SS-encoding elements into a new bacterial host. IMPORTANCE Interbacterial weapons like the T6SS are often located on mobile genetic elements, and their expression is highly regulated. We found that two conserved structural proteins are required for T6SS expression in Vibrio fischeri. These structural proteins also contain predicted GTPase and GTP binding domains, suggesting their role in promoting T6SS expression may involve sensing the energetic state of the cell. Such a mechanism would provide a direct link between T6SS activation and cellular energy levels, providing a "checkpoint" to ensure the cell has sufficient energy to build such a costly weapon. Because these regulatory factors are encoded within the T6SS gene cluster, they are predicted to move with the genetic element to activate T6SS expression in a new host cell.


Assuntos
Aliivibrio fischeri/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Sistemas de Secreção Tipo VI/metabolismo , Aliivibrio fischeri/genética , Proteínas de Bactérias/genética , Genótipo , Mutação , Regiões Promotoras Genéticas , Sistemas de Secreção Tipo VI/genética
13.
mSphere ; 6(4): e0128820, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34287008

RESUMO

Bacteria employ diverse competitive strategies to enhance fitness and promote their own propagation. However, little is known about how symbiotic bacteria modulate competitive mechanisms as they compete for a host niche. The bacterium Vibrio fischeri forms a symbiotic relationship with marine animals and encodes a type VI secretion system (T6SS), which is a contact-dependent killing mechanism used to eliminate competitors during colonization of the Euprymna scolopes squid light organ. Like other horizontally acquired symbionts, V. fischeri experiences changes in its physical and chemical environment during symbiosis establishment. Therefore, we probed both environmental and host-like conditions to identify ecologically relevant cues that control T6SS-dependent competition during habitat transition. Although the T6SS did not confer a competitive advantage for V. fischeri strain ES401 under planktonic conditions, a combination of both host-like pH and viscosity was necessary for T6SS competition. For ES401, high viscosity activates T6SS expression and neutral/acidic pH promotes cell-cell contact for killing, and this pH-dependent phenotype was conserved in the majority of T6SS-encoding strains examined. We also identified a subset of V. fischeri isolates that engaged in T6SS-mediated competition at high viscosity under both planktonic and host-like pH conditions. T6SS phylogeny revealed that strains with pH-dependent phenotypes cluster together to form a subclade within the pH-independent strains, suggesting that V. fischeri may have recently evolved to limit competition to the host niche. IMPORTANCE Bacteria have evolved diverse strategies to compete for limited space and resources. Because these mechanisms can be costly to use, their expression and function are often restricted to specific environments where the benefits outweigh the costs. However, little is known about the specific cues that modulate competitive mechanisms as bacterial symbionts transition between free-living and host habitats. Here, we used the bioluminescent squid and fish symbiont Vibrio fischeri to probe for host and environmental conditions that control interbacterial competition via the type VI secretion system. Our findings identify a new host-specific cue that promotes competition among many but not all V. fischeri isolates, underscoring the utility of studying multiple strains to reveal how competitive mechanisms may be differentially regulated among closely related populations as they evolve to fill distinct niches.


Assuntos
Aliivibrio fischeri/fisiologia , Decapodiformes/microbiologia , Interações entre Hospedeiro e Microrganismos , Simbiose , Sistemas de Secreção Tipo VI/metabolismo , Aliivibrio fischeri/classificação , Aliivibrio fischeri/crescimento & desenvolvimento , Animais , Ecossistema , Concentração de Íons de Hidrogênio , Concentração Osmolar , Fenótipo , Filogenia , Sistemas de Secreção Tipo VI/classificação , Viscosidade
14.
mSystems ; 5(4)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32788406

RESUMO

The Roseobacter clade is a group of alphaproteobacteria that have diverse metabolic and regulatory capabilities. They are abundant in marine environments and have a substantial role in marine ecology and biogeochemistry. However, interactions between roseobacters and other bacterioplankton have not been extensively explored. In this study, we identify a killing mechanism in the model roseobacter Ruegeria pomeroyi DSS-3 by coculturing it with a group of phylogenetically diverse bacteria. The killing mechanism is diffusible and occurs when cells are grown both on surfaces and in suspension and is dependent on cell density. A screen of random transposon mutants revealed that the killing phenotype, as well as resistance to killing, require genes within an ∼8-kb putative gamma-butyrolactone synthesis gene cluster, which resembles similar pheromone-sensing systems in actinomycetes that regulate secondary metabolite production, including antimicrobials. Transcriptomics revealed the gene cluster is highly upregulated in wild-type DSS-3 compared to a nonkiller mutant when grown in liquid coculture with a roseobacter target. Our findings show that R. pomeroyi has the capability to eliminate closely and distantly related competitors, providing a mechanism to alter the community structure and function in its native habitats.IMPORTANCE Bacteria carry out critical ecological and biogeochemical processes and form the foundations of ecosystems. Identifying the factors that influence microbial community composition and the functional capabilities encoded within them is key to predicting how microbes impact an ecosystem. Because microorganisms must compete for limited space and nutrients to promote their own propagation, they have evolved diverse mechanisms to outcompete or kill competitors. However, the genes and regulatory strategies that promote such competitive abilities are largely underexplored, particularly in free-living marine bacteria. Here, genetics and omics techniques are used to investigate how a model marine bacterium is capable of quickly eliminating natural competitors in coculture. We determined that a previously uncharacterized horizontally acquired gene cluster is required for this bacterium to kill diverse competitors. This work represents an important step toward understanding the mechanisms bacterial populations can use to become dominant members in marine microbial communities.

15.
Microbiol Resour Announc ; 9(8)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32079629

RESUMO

Vibrio species of the Harveyi clade are commonly found in free-living and host-associated marine habitats. Here, we report the draft genome sequence for a Harveyi clade bacterium, Vibrio sp. strain LB10LO1, which was isolated from the Atlantic brief squid Lolliguncula brevis.

16.
mBio ; 11(1)2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019799

RESUMO

Symbiotic bacteria use diverse strategies to compete for host colonization sites. However, little is known about the environmental cues that modulate interbacterial competition as they transition between free-living and host-associated lifestyles. We used the mutualistic relationship between Eupyrmna scolopes squid and Vibrio fischeri bacteria to investigate how intraspecific competition is regulated as symbionts move from the seawater to a host-like environment. We recently reported that V. fischeri uses a type VI secretion system (T6SS) for intraspecific competition during host colonization. Here, we investigated how environmental viscosity impacts T6SS-mediated competition by using a liquid hydrogel medium that mimics the viscous host environment. Our data demonstrate that although the T6SS is functionally inactive when cells are grown under low-viscosity liquid conditions similar to those found in seawater, exposure to a host-like high-viscosity hydrogel enhances T6SS expression and sheath formation, activates T6SS-mediated killing in as little as 30 min, and promotes the coaggregation of competing genotypes. Finally, the use of mass spectrometry-based proteomics revealed insights into how cells may prepare for T6SS competition during this habitat transition. These findings, which establish the use of a new hydrogel culture condition for studying T6SS interactions, indicate that V. fischeri rapidly responds to the physical environment to activate the competitive mechanisms used during host colonization.IMPORTANCE Bacteria often engage in interference competition to gain access to an ecological niche, such as a host. However, little is known about how the physical environment experienced by free-living or host-associated bacteria influences such competition. We used the bioluminescent squid symbiont Vibrio fischeri to study how environmental viscosity impacts bacterial competition. Our results suggest that upon transition from a planktonic environment to a host-like environment, V. fischeri cells activate their type VI secretion system, a contact-dependent interbacterial nanoweapon, to eliminate natural competitors. This work shows that competitor cells form aggregates under host-like conditions, thereby facilitating the contact required for killing, and reveals how V. fischeri regulates a key competitive mechanism in response to the physical environment.


Assuntos
Aliivibrio fischeri/genética , Aliivibrio fischeri/fisiologia , Decapodiformes/microbiologia , Ecossistema , Simbiose , Animais , Regulação Bacteriana da Expressão Gênica , Genótipo , Proteômica , Água do Mar , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Viscosidade
17.
J Vis Exp ; (149)2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31380831

RESUMO

This manuscript describes a culture-based, coincubation assay for detecting and characterizing competitive interactions between two bacterial populations. This method employs stable plasmids that allow each population to be differentially tagged with distinct antibiotic resistance capabilities and fluorescent proteins for selection and visual discrimination of each population, respectively. Here, we describe the preparation and coincubation of competing Vibrio fischeri strains, fluorescence microscopy imaging, and quantitative data analysis. This approach is simple, yields quick results, and can be used to determine whether one population kills or inhibits the growth of another population, and whether competition is mediated through a diffusible molecule or requires direct cell-cell contact. Because each bacterial population expresses a different fluorescent protein, the assay permits the spatial discrimination of competing populations within a mixed colony. Although the described methods are performed with the symbiotic bacterium V. fischeri using conditions optimized for this species, the protocol can be adapted for most culturable bacterial isolates.


Assuntos
Aliivibrio fischeri/isolamento & purificação , Aliivibrio fischeri/efeitos dos fármacos , Aliivibrio fischeri/crescimento & desenvolvimento , Resistência Microbiana a Medicamentos , Plasmídeos , Simbiose
18.
mSystems ; 4(3)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186308

RESUMO

The symbiosis between Euprymna scolopes squid and its bioluminescent bacterial symbiont, Vibrio fischeri, is a valuable model system to study a natural, coevolved host-microbe association. Over the past 30 years, researchers have developed and optimized many experimental methods to study both partners in isolation and during symbiosis. These powerful tools, along with a strong foundational knowledge about the system, position the Vibrio-squid symbiosis at the forefront of host-microbe interactions because this system is uniquely suited to investigation of symbiosis from both host and bacterial perspectives. Moreover, the ability to isolate and characterize different strains of V. fischeri has revealed exciting new insights about how different genotypes evolve to compete for a host niche, including deploying interbacterial weapons early during host colonization. This Perspective explores how interbacterial warfare influences the diversity and spatial structure of the symbiotic population, as well as the possible effects that intraspecific competition might have on the host.

19.
Microbiol Resour Announc ; 8(20)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097508

RESUMO

The type VI secretion system (T6SS) facilitates lethal competition between bacteria through direct contact. Comparative genomics has facilitated the study of these systems in Vibrio fischeri, which colonizes the squid host Euprymna scolopes Here, we report the draft genome sequences of two lethal V. fischeri strains that encode the T6SS, FQ-A001 and ES401.

20.
Proc Natl Acad Sci U S A ; 115(36): E8528-E8537, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30127013

RESUMO

Intraspecific competition describes the negative interaction that occurs when different populations of the same species attempt to fill the same niche. Such competition is predicted to occur among host-associated bacteria but has been challenging to study in natural biological systems. Although many bioluminescent Vibrio fischeri strains exist in seawater, only a few strains are found in the light-organ crypts of an individual wild-caught Euprymna scolopes squid, suggesting a possible role for intraspecific competition during early colonization. Using a culture-based assay to investigate the interactions of different V. fischeri strains, we found "lethal" and "nonlethal" isolates that could kill or not kill the well-studied light-organ isolate ES114, respectively. The killing phenotype of these lethal strains required a type VI secretion system (T6SS) encoded in a 50-kb genomic island. Multiple lethal and nonlethal strains could be cultured from the light organs of individual wild-caught adult squid. Although lethal strains eliminate nonlethal strains in vitro, two lethal strains could coexist in interspersed microcolonies that formed in a T6SS-dependent manner. This coexistence was destabilized upon physical mixing, resulting in one lethal strain consistently eliminating the other. When juvenile squid were coinoculated with lethal and nonlethal strains, they occupied different crypts, yet they were observed to coexist within crypts when T6SS function was disrupted. These findings, using a combination of natural isolates and experimental approaches in vitro and in the animal host, reveal the importance of T6SS in spatially separating strains during the establishment of host colonization in a natural symbiosis.


Assuntos
Aliivibrio fischeri/fisiologia , Decapodiformes/microbiologia , Simbiose/fisiologia , Sistemas de Secreção Tipo IV , Aliivibrio fischeri/isolamento & purificação , Animais , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA