RESUMO
Outcomes for pediatric brain tumor patients remain poor, and there is optimism that chimeric antigen receptor (CAR) T cell therapy can improve prognosis. Here, we present interim results from the first six pediatric patients treated on an ongoing phase I clinical trial (NCT04510051) of IL13BBζ-CAR T cells delivered weekly into the lateral cerebral ventricles, identifying clonal expansion of endogenous CAR-negative CD8+ T cells in the cerebrospinal fluid (CSF) over time. Additionally, of the five patients evaluable for disease response, three experienced transient radiographic and/or clinical benefit not meeting protocol criteria for response. The first three patients received CAR T cells alone; later patients received lymphodepletion before the first infusion. There were no dose limiting toxicities (DLTs). Aside from expected cytopenias in patients receiving lymphodepletion, serious adverse events possibly attributed to CAR T cell infusion were limited to one episode of headache and one of liver enzyme elevation. One patient withdrew from treatment during the DLT period due to a Grade 3 catheter-related infection and was not evaluable for disease response, although this was not attributed to CAR T cell infusion. Importantly, scRNA- and scTCR-sequence analyses provided insights into CAR T cell interaction with the endogenous immune system. In particular, clonally expanded endogenous CAR- T cells were recovered from the CSF, but not the peripheral blood, of patients who received intraventricular IL13BBζ-CAR T cell therapy. Additionally, although immune infiltrates in CSF and post-therapy tumor did not generally correlate, a fraction of expanded T cell receptors (TCRs) was seen to overlap between CSF and tumor. This has important implications for what samples are collected on these trials and how they are analyzed. These initial findings provide support for continued investigation into locoregionally-delivered IL13BBζ-CAR T cells for children with brain tumors.
RESUMO
Antibody-peptide epitope conjugates (APEC) are a new class of modified antibody-drug conjugates that redirect T-cell viral immunity against tumor cells. APECs contain a tumor-specific protease cleavage site linked to a patient-specific viral epitope, resulting in presentation of viral epitopes on cancer cells and subsequent recruitment and killing by CD8+ T cells. Here we developed an experimental pipeline to create patient-specific APECs and identified new preclinical therapies for ovarian carcinoma. Using functional assessment of viral peptide antigen responses to common viruses like cytomegalovirus (CMV) in patients with ovarian cancer, a library of 192 APECs with distinct protease cleavage sequences was created using the anti-epithelial cell adhesion molecule (EpCAM) antibody. Each APEC was tested for in vitro cancer cell killing, and top candidates were screened for killing xenograft tumors grown in zebrafish and mice. These preclinical modeling studies identified EpCAM-MMP7-CMV APEC (EpCAM-MC) as a potential new immunotherapy for ovarian carcinoma. Importantly, EpCAM-MC also demonstrated robust T-cell responses in primary ovarian carcinoma patient ascites samples. This work highlights a robust, customizable platform to rapidly develop patient-specific APECs. SIGNIFICANCE: This study develops a high-throughput preclinical platform to identify patient-specific antibody-peptide epitope conjugates that target cancer cells and demonstrates the potential of this immunotherapy approach for treating ovarian carcinoma.
Assuntos
Infecções por Citomegalovirus , Imunoconjugados , Neoplasias Ovarianas , Animais , Anticorpos , Linfócitos T CD8-Positivos , Carcinoma Epitelial do Ovário/tratamento farmacológico , Citomegalovirus , Molécula de Adesão da Célula Epitelial , Epitopos , Feminino , Humanos , Imunoconjugados/uso terapêutico , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Peptídeo Hidrolases , Peptídeos , Peixe-ZebraRESUMO
Several cancer immunotherapy approaches, such as immune checkpoint blockade and adoptive T-cell therapy, boost T-cell activity against the tumor, but these strategies are not effective in the absence of T cells specific for displayed tumor antigens. Here we outline an immunotherapy in which endogenous T cells specific for a noncancer antigen are retargeted to attack tumors. The approach relies on the use of antibody-peptide epitope conjugates (APECs) to deliver suitable antigens to the tumor surface for presention by HLA-I. To retarget cytomegalovirus (CMV)-specific CD8+ T cells against tumors, we used APECs containing CMV-derived epitopes conjugated to tumor-targeting antibodies via metalloprotease-sensitive linkers. These APECs redirect pre-existing CMV immunity against tumor cells in vitro and in mouse cancer models. In vitro, APECs activated specifically CMV-reactive effector T cells whereas a bispecific T-cell engager activated both effector and regulatory T cells. Our approach may provide an effective alternative in cancers that are not amenable to checkpoint inhibitors or other immunotherapies.
Assuntos
Anticorpos/imunologia , Linfócitos T CD8-Positivos/transplante , Citomegalovirus/imunologia , Epitopos de Linfócito T/imunologia , Imunoconjugados/uso terapêutico , Neoplasias/terapia , Animais , Anticorpos/química , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Epitopos de Linfócito T/química , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/metabolismo , Imunomodulação , Imunoterapia Adotiva , Ativação Linfocitária , Metaloproteinases da Matriz/metabolismo , Camundongos , Neoplasias/imunologiaRESUMO
Phosphatidylinositol (PI) 3-kinase/Akt signaling plays a critical role in cell proliferation and survival, partly by regulation of FoxO transcription factors. Previous work using global expression profiling indicated that inhibition of PI 3-kinase in proliferating cells led to induction of genes that promote cell cycle arrest and apoptosis. The upstream regulatory regions of these genes had binding sites not only for FoxO, but also for Myc/Max transcription factors. In the present study, we have addressed the role of Myc family members and related E-box-binding proteins in the regulation of these genes. Chromatin immunoprecipitations and RNA interference indicated that transcription was repressed by Max-Mnt-Sin3a-histone deacetylase complexes in proliferating cells. Inhibition of PI 3-kinase led to a loss of Max/Mnt binding and transcriptional induction by MITF and USF1, as well as FoxO. Both MITF and USF1 were activated by glycogen synthase kinase (GSK) 3, with GSK3 phosphorylation sites on USF1 identified as the previously described activating site threonine 153 as well as serine 186. siRNA against MITF as well as against FoxO3a protected cells from apoptosis following PI 3-kinase inhibition. These results define a novel E-box-regulated network that functions coordinately with FoxO to regulate transcription of apoptotic and cell cycle regulatory genes downstream of PI 3-kinase/Akt/GSK3 signaling.
Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclo Celular/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Fatores Estimuladores Upstream/metabolismo , Proteínas Reguladoras de Apoptose/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/genética , Quinase 3 da Glicogênio Sintase/genética , Humanos , Fator de Transcrição Associado à Microftalmia/genética , Fosfatidilinositol 3-Quinases/genética , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3 , Transcrição Gênica/fisiologia , Fatores Estimuladores Upstream/genéticaRESUMO
An important aspect of the aging process in Drosophila melanogaster is the natural loss of antennae, legs, bristles, and parts of wings with age. These injuries lead to a loss of hemolymph, which contains water and nutrients. Stress-resistant lines of D. melanogaster are sometimes longer-lived than the populations from which they are derived. One hypothesis tested here is that increased stress-resistance fosters longevity because it allows fruit flies to cope with the loss of hemolymph due to injury to the aging fly. We tested the effects of surgically induced injury on the aging and reproduction of five replicate populations. We then tested the effects of injury on populations that had been selected for different levels of stress resistance and on control populations. Injury affected aging more in males than in females, in part because of a counter-balancing reduction in female reproduction brought about by injury. More specifically, injury reduced female fecundity and male virility. Injury significantly reduced the starvation resistance in some groups of flies, but not in others. These findings undermine any simple interpretation of the interactions between injury, reproduction, and aging based on stress resistance. But they do indicate the existence of significant interactions between these biological processes, interactions that should be resolved in greater mechanistic detail than has been managed here.