Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS One ; 6(6): e21075, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21701578

RESUMO

We recently reported that the oxidized avidin, named AvidinOX®, resides for weeks within injected tissues as a consequence of the formation of Schiff's bases between its aldehyde groups and tissue protein amino groups. We also showed, in a mouse pre-clinical model, the usefulness of AvidinOX for the delivery of radiolabeled biotin to inoperable tumors. Taking into account that AvidinOX is the first oxidized glycoprotein known to chemically link to injected tissues, we tested in the mouse a panel of additional oxidized glycoproteins, with the aim of investigating the phenomenon. We produced oxidized ovalbumin and mannosylated streptavidin which share with avidin glycosylation pattern and tetrameric structure, respectively and found that neither of them linked significantly to cells in vitro nor to injected tissues in vivo, despite the presence of functional aldehyde groups. The study, extended to additional oxidized glycoproteins, showed that the in vivo chemical conjugation is a distinctive property of the oxidized avidin. Relevance of the high cationic charge of avidin into the stable linkage of AvidinOX to tissues is demonstrated as the oxidized acetylated avidin lost the property. Plasmon resonance on matrix proteins and cellular impedance analyses showed in vitro that avidin exhibits a peculiar interaction with proteins and cells that allows the formation of highly stable Schiff's bases, after oxidation.


Assuntos
Avidina/metabolismo , Células 3T3 , Animais , Linhagem Celular Tumoral , Galinhas , Glicoproteínas/metabolismo , Glicosilação , Humanos , Masculino , Camundongos , Microscopia Confocal , Ovalbumina/metabolismo , Ligação Proteica , Estreptavidina/metabolismo , Ressonância de Plasmônio de Superfície
2.
Eur J Dermatol ; 13(6): 560-70, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14721776

RESUMO

The ARS Component B gene (EMBL ID: HSARS81S, AC: X99977) encodes a 9 kD non-glycosylated polypeptide (also known as SLURP-1, SwissProt/TrEMBL: P55000), a soluble member of the human Ly6/uPAR superfamily. ARS Component B gene mutations have been implicated in Mal de Meleda. In this study we show by immunohistochemistry that SLURP-1 (secreted Ly-6/uPAR related protein, the protein product of the ARS Component B gene) is localized to human skin, exocervix, gums, stomach and esophagus. In the epidermis, keratinocytes underlying the stratum corneum are highly positive for SLURP1 immunostaining and cultured keratinocytes secrete the expected 9 kD protein. Circulating SLURP1 is detected in human plasma and urine. In the mouse, expression is evident in skin, eye, whole lung, trachea, esophagus and stomach. Human ARS Component B mRNA expression is regulated by retinoic acid, epidermal growth factor and interferon-gamma. The tissue localization and the association with Mal de Meleda suggest that ARS Component B and its protein product SLURP1 are implicated in maintaining the physiological and structural integrity of the keratinocyte layers of the skin.


Assuntos
Antígenos Ly/genética , Queratinócitos/metabolismo , Ceratodermia Palmar e Plantar/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Humanos , Imuno-Histoquímica , Ceratodermia Palmar e Plantar/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Estrutura Molecular , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA