Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(14): 17422-17431, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557067

RESUMO

The use of the "Holy Grail" lithium metal anode is pivotal to achieve superior energy density. However, the practice of a lithium metal anode faces practical challenges due to the thermodynamic instability of lithium metal and dendrite growth. Herein, an artificial stabilization of lithium metal was carried out via the thermal pyrolysis of the NH4F salt, which generates HF(g) and NH3(g). An exposure of lithium metal to the generated gas induces a spontaneous reaction that forms multiple solid electrolyte interface (SEI) components, such as LiF, Li3N, Li2NH, LiNH2, and LiH, from a single salt. The artificially multilayered protection on lithium metal (AF-Li) sustains stable lithium stripping/plating. It suppresses the Li dendrite under the Li||Li symmetric cell. The half-cell Li||Cu and Li||MCMB systems depicted the attributions of the protective layer. We demonstrate that the desirable protective layer in AF-Li exhibited remarkable capacity retention (CR) results. LiFePO4 (LFP) showed a CR of 90.6% at 0.5 mA cm-2 after 280 cycles, and LiNi0.5Mn0.3Co0.2O2 (NCM523) showed 58.7% at 3 mA cm-2 after 410 cycles. Formulating the multilayered protection, with the simultaneous formation of multiple SEI components in a facile and cost-effective approach from NH4F as a single salt, made the system competent.

2.
ACS Appl Mater Interfaces ; 16(8): 10832-10844, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38359779

RESUMO

Due to its good mechanical properties and high ionic conductivity, the sulfide-type solid electrolyte (SE) can potentially realize all-solid-state batteries (ASSBs). Nevertheless, challenges, including limited electrochemical stability, insufficient solid-solid contact with the electrode, and reactivity with lithium, must be addressed. These challenges contribute to dendrite growth and electrolyte reduction. Herein, a straightforward and solvent-free method was devised to generate a robust artificial interphase between lithium metal and a SE. It is achieved through the incorporation of a composite electrolyte composed of Li6PS5Cl (LPSC), polyethylene glycol (PEG), and lithium bis(fluorosulfonyl)imide (LiFSI), resulting in the in situ creation of a LiF-rich interfacial layer. This interphase effectively mitigates electrolyte reduction and promotes lithium-ion diffusion. Interestingly, including PEG as an additive increases mechanical strength by enhancing adhesion between sulfide particles and improves the physical contact between the LPSC SE and the lithium anode by enhancing the ductility of the LPSC SE. Moreover, it acts as a protective barrier, preventing direct contact between the SE and the Li anode, thereby inhibiting electrolyte decomposition and reducing the electronic conductivity of the composite SE, thus mitigating the dendrite growth. The Li|Li symmetric cells demonstrated remarkable cycling stability, maintaining consistent performance for over 3000 h at a current density of 0.1 mA cm-2, and the critical current density of the composite solid electrolyte (CSE) reaches 4.75 mA cm-2. Moreover, the all-solid-state lithium metal battery (ASSLMB) cell with the CSEs exhibits remarkable cycling stability and rate performance. This study highlights the synergistic combination of the in-situ-generated artificial SE interphase layer and CSEs, enabling high-performance ASSLMBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA