Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1817: 148496, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499733

RESUMO

Generation of amyloid-ß (Aß) peptides through the proteolytic processing of the amyloid precursor protein (APP) is a pathogenic event in Alzheimer's disease (AD). APP is a transmembrane protein and endocytosis of APP mediated by the YENPTY motif is a key step in Aß generation. Mints, a family of cytosolic adaptor proteins, directly bind to the YENPTY motif of APP and facilitate APP trafficking and processing. Here, we generated and examined two Mint1 mutants, Tyr633Ala of Mint1 (Mint1Y633A) that enhanced APP binding, and Tyr549Ala and Phe610Ala mutant (Mint1Y549A/F610A), that reduced APP binding. We investigated how perturbing the APP-Mint1 interaction through these Mint1 mutants alter APP and Mint1 cellular dynamics and Mint1's interaction with its other binding partners. We found that Mint1Y633A increased binding affinity specifically for APP and presenilin1 (catalytic subunit of γ-secretase), that subsequently enhanced APP endocytosis in primary murine neurons. Conversely, Mint1Y549A/F610A exhibited reduced APP affinity and Aß secretion. The effect of Mint1Y549A/F610A on Aß release was greater compared to knocking down all three Mint proteins supporting the APP-Mint1 interaction is a critical factor in Aß production. Altogether, this study highlights the potential of targeting the APP-Mint1 interaction as a therapeutic strategy for AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Neurônios/metabolismo
2.
J Mol Biol ; 435(11): 168039, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37330291

RESUMO

Functional bacterial amyloid provides structural stability in biofilm, making it a promising target for anti-biofilm therapeutics. Fibrils formed by CsgA, the major amyloid component in E. coli are extremely robust and can withstand very harsh conditions. Like other functional amyloids, CsgA contains relatively short aggregation-prone regions (APR) which drive amyloid formation. Here, we demonstrate the use of aggregation-modulating peptides to knock down CsgA protein into aggregates with low stability and altered morphology. Remarkably, these CsgA-peptides also modulate fibrillation of the unrelated functional amyloid protein FapC from Pseudomonas, possibly through recognition of FapC segments with structural and sequence similarity with CsgA. The peptides also reduce the level of biofilm formation in E. coli and P. aeruginosa, demonstrating the potential for selective amyloid targeting to combat bacterial biofilm.


Assuntos
Amiloide , Proteínas de Bactérias , Biofilmes , Proteínas de Escherichia coli , Escherichia coli , Peptídeos , Agregados Proteicos , Amiloide/química , Proteínas Amiloidogênicas/química , Proteínas de Bactérias/química , Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Peptídeos/química , Peptídeos/farmacologia , Pseudomonas aeruginosa/metabolismo , Estabilidade Proteica
3.
J Med Chem ; 66(4): 3045-3057, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36749163

RESUMO

Peptides targeting disease-relevant protein-protein interactions are an attractive class of therapeutics covering the otherwise undruggable space between small molecules and therapeutic proteins. However, peptides generally suffer from poor metabolic stability and low membrane permeability. Hence, peptide cyclization has become a valuable approach to develop linear peptide motifs into metabolically stable and potentially cell-permeable cyclic leads. Furthermore, cyclization of side chains, also known as "stapling", can stabilize particular secondary peptide structures. Here, we demonstrate that a comprehensive examination of cyclization strategies in terms of position, chemistry, and length is a prerequisite for the selection of optimal cyclic peptide scaffolds. Our systematic approach identifies cyclic APP dodecamer peptides targeting the phosphotyrosine binding domain of Mint2 with substantially improved affinity. We show that especially all-hydrocarbon stapling provides improved metabolic stability, a significantly stabilized secondary structure and membrane permeability.


Assuntos
Precursor de Proteína beta-Amiloide , Peptídeos Cíclicos , Ciclização , Peptídeos Cíclicos/química , Estrutura Secundária de Proteína , Precursor de Proteína beta-Amiloide/química , Ligação Proteica , Fosfotirosina/química
4.
Elife ; 122023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688536

RESUMO

Amyloid-ß precursor protein (APP) regulates neuronal activity through the release of secreted APP (sAPP) acting at cell surface receptors. APP and sAPP were reported to bind to the extracellular sushi domain 1 (SD1) of GABAB receptors (GBRs). A 17 amino acid peptide (APP17) derived from APP was sufficient for SD1 binding and shown to mimic the inhibitory effect of sAPP on neurotransmitter release and neuronal activity. The functional effects of APP17 and sAPP were similar to those of the GBR agonist baclofen and blocked by a GBR antagonist. These experiments led to the proposal that sAPP activates GBRs to exert its neuronal effects. However, whether APP17 and sAPP influence classical GBR signaling pathways in heterologous cells was not analyzed. Here, we confirm that APP17 binds to GBRs with nanomolar affinity. However, biochemical and electrophysiological experiments indicate that APP17 does not influence GBR activity in heterologous cells. Moreover, APP17 did not regulate synaptic GBR localization, GBR-activated K+ currents, neurotransmitter release, or neuronal activity in vitro or in vivo. Our results show that APP17 is not a functional GBR ligand and indicate that sAPP exerts its neuronal effects through receptors other than GBRs.


Assuntos
Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Ácido gama-Aminobutírico/metabolismo
5.
J Biol Chem ; 298(12): 102688, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370848

RESUMO

Parkinson's disease is a neurodegenerative movement disorder associated with the intracellular aggregation of α-synuclein (α-syn). Cytotoxicity is mainly associated with the oligomeric species (αSOs) formed at early stages in α-syn aggregation. Consequently, there is an intense focus on the discovery of novel inhibitors such as peptides to inhibit oligomer formation and toxicity. Here, using peptide arrays, we identified nine peptides with high specificity and affinity for αSOs. Of these, peptides p194, p235, and p249 diverted α-syn aggregation from fibrils to amorphous aggregates with reduced ß-structures and increased random coil content. However, they did not reduce αSO cytotoxicity and permeabilization of large anionic unilamellar vesicles. In parallel, we identified a non-self-aggregating peptide (p216), derived from the cell-penetrating peptide penetratin, which showed 12-fold higher binding affinity to αSOs than to α-syn monomers (Kdapp 2.7 and 31.2 µM, respectively). p216 reduced αSOs-induced large anionic unilamellar vesicle membrane permeability at 10-1 to 10-3 mg/ml by almost 100%, was not toxic to SH-SY5Y cells, and reduced αSOs cytotoxicity by about 20%. We conclude that p216 is a promising starting point from which to develop peptides targeting toxic αSOs in Parkinson's disease.


Assuntos
Peptídeos Penetradores de Células , Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Peptídeos Penetradores de Células/isolamento & purificação , Peptídeos Penetradores de Células/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Linhagem Celular Tumoral
6.
Viruses ; 14(10)2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36298757

RESUMO

Viruses are dependent on host factors in order to efficiently establish an infection and replicate. Targeting the interactions of such host factors provides an attractive strategy to develop novel antivirals. Syntenin is a protein known to regulate the architecture of cellular membranes by its involvement in protein trafficking and has previously been shown to be important for human papilloma virus (HPV) infection. Here, we show that a highly potent and metabolically stable peptide inhibitor that binds to the PDZ1 domain of syntenin inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by blocking the endosomal entry of the virus. Furthermore, we found that the inhibitor also hampered chikungunya infection and strongly reduced flavivirus infection, which is completely dependent on receptor-mediated endocytosis for their entry. In conclusion, we have identified a novel broad spectrum antiviral inhibitor that efficiently targets a broad range of RNA viruses.


Assuntos
COVID-19 , Vírus de RNA , Humanos , SARS-CoV-2 , Sinteninas , Antivirais/farmacologia , Antivirais/química , Internalização do Vírus
7.
iScience ; 25(2): 103808, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35198873

RESUMO

The organization of the postsynaptic density (PSD), a protein-dense semi-membraneless organelle, is mediated by numerous specific protein-protein interactions (PPIs) which constitute a functional postsynapse. The PSD protein 95 (PSD-95) interacts with a manifold of proteins, including the C-terminal of transmembrane AMPA receptor (AMPAR) regulatory proteins (TARPs). Here, we uncover the minimal essential peptide responsible for the Stargazin (TARP-γ2)-mediated liquid-liquid phase separation (LLPS) formation of PSD-95 and other key protein constituents of the PSD. Furthermore, we find that pharmacological inhibitors of PSD-95 can facilitate the formation of LLPS. We found that in some cases LLPS formation is dependent on multivalent interactions, while in other cases short, highly charged peptides are sufficient to promote LLPS in complex systems. This study offers a new perspective on PSD-95 interactions and their role in LLPS formation, while also considering the role of affinity over multivalency in LLPS systems.

8.
ACS Omega ; 6(34): 21960-21970, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34497891

RESUMO

Functional amyloids are highly organized protein/peptide structures that inter alia promote biofilm formation in different bacteria. One such example is provided by a family of 20-45 residue-long peptides called phenol-soluble modulins (PSMs) from Staphylococcus aureus. External components such as eukaryotic host proteins, which alter self-assembly of bacterial amyloids, can affect the biofilm matrix. Here, we studied the effect of the highly prevalent human plasma protein fibrinogen (Fg) on fibrillation of PSMs. Fg inhibits or suppresses fibrillation of most PSMs tested (PSMα1, PSMß1, and PSMß2) except for PSMα3, whose already rapid aggregation is accelerated even further by Fg but leads to amorphous ß-rich aggregates rather than fibrils. Fg also induces PSMß2 to form amorphous aggregates and diverts PSMα1 into off-pathway oligomers which consist of both Fg and PSMα1 and cannot seed fibrillation. Peptide arrays showed that Fg bound to the N-terminus of PSMα1, while it bound to the entire length of PSMα3 (except the C terminus) and to the C-termini of PSMß1 and PSMß2. The latter peptides are all positively charged, while Fg is negatively charged at physiological pH. The positive charges complement Fg's net negative charge of -7.6 at pH 7.4. Fg's ability to inhibit PSM fibrillation reveals a potential host-defense mechanism to prevent bacterial biofilm growth and infections in the human body.

9.
J Biol Chem ; 297(2): 100953, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34270957

RESUMO

Phenol-soluble modulins (PSMs), such as α-PSMs, ß-PSMs, and δ-toxin, are virulence peptides secreted by different Staphylococcus aureus strains. PSMs are able to form amyloid fibrils, which may strengthen the biofilm matrix that promotes bacterial colonization of and extended growth on surfaces (e.g., cell tissue) and increases antibiotic resistance. Many components contribute to biofilm formation, including the human-produced highly sulfated glycosaminoglycan heparin. Although heparin promotes S. aureus infection, the molecular basis for this is unclear. Given that heparin is known to induce fibrillation of a wide range of proteins, we hypothesized that heparin aids bacterial colonization by promoting PSM fibrillation. Here, we address this hypothesis using a combination of thioflavin T-fluorescence kinetic studies, CD, FTIR, electron microscopy, and peptide microarrays to investigate the mechanism of aggregation, the structure of the fibrils, and identify possible binding regions. We found that heparin accelerates fibrillation of all α-PSMs (except PSMα2) and δ-toxin but inhibits ß-PSM fibrillation by blocking nucleation or reducing fibrillation levels. Given that S. aureus secretes higher levels of α-PSM than ß-PSM peptides, heparin is therefore likely to promote fibrillation overall. Heparin binding is driven by multiple positively charged lysine residues in α-PSMs and δ-toxins, the removal of which strongly reduced binding affinity. Binding of heparin did not affect the structure of the resulting fibrils, that is, the outcome of the aggregation process. Rather, heparin provided a scaffold to catalyze or inhibit fibrillation. Based on our findings, we speculate that heparin may strengthen the bacterial biofilm and therefore enhance colonization via increased PSM fibrillation.


Assuntos
Peptídeos , Staphylococcus aureus , Toxinas Bacterianas , Biofilmes/crescimento & desenvolvimento , Cinética , Peptídeos/metabolismo , Virulência
10.
J Am Chem Soc ; 143(2): 891-901, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33398998

RESUMO

There is an urgent need for novel therapeutic approaches to treat Alzheimer's disease (AD) with the ability to both alleviate the clinical symptoms and halt the progression of the disease. AD is characterized by the accumulation of amyloid-ß (Aß) peptides which are generated through the sequential proteolytic cleavage of the amyloid precursor protein (APP). Previous studies reported that Mint2, a neuronal adaptor protein binding both APP and the γ-secretase complex, affects APP processing and formation of pathogenic Aß. However, there have been contradicting results concerning whether Mint2 has a facilitative or suppressive effect on Aß generation. Herein, we deciphered the APP-Mint2 protein-protein interaction (PPI) via extensive probing of both backbone H-bond and side-chain interactions. We also developed a proteolytically stable, high-affinity peptide targeting the APP-Mint2 interaction. We found that both an APP binding-deficient Mint2 variant and a cell-permeable PPI inhibitor significantly reduced Aß42 levels in a neuronal in vitro model of AD. Together, these findings demonstrate a facilitative role of Mint2 in Aß formation, and the combination of genetic and pharmacological approaches suggests that targeting Mint2 is a promising therapeutic strategy to reduce pathogenic Aß levels.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Caderinas/antagonistas & inibidores , Proteínas do Tecido Nervoso/antagonistas & inibidores , Peptídeos/farmacologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Caderinas/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica/efeitos dos fármacos
11.
J Med Chem ; 64(3): 1423-1434, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33502198

RESUMO

Despite the recent advances in cancer therapeutics, highly aggressive cancer forms, such as glioblastoma (GBM), still have very low survival rates. The intracellular scaffold protein syntenin, comprising two postsynaptic density protein-95/discs-large/zona occludens-1 (PDZ) domains, has emerged as a novel therapeutic target in highly malignant phenotypes including GBM. Here, we report the development of a novel, highly potent, and metabolically stable peptide inhibitor of syntenin, KSL-128114, which binds the PDZ1 domain of syntenin with nanomolar affinity. KSL-128114 is resistant toward degradation in human plasma and mouse hepatic microsomes and displays a global PDZ domain selectivity for syntenin. An X-ray crystal structure reveals that KSL-128114 interacts with syntenin PDZ1 in an extended noncanonical binding mode. Treatment with KSL-128114 shows an inhibitory effect on primary GBM cell viability and significantly extends survival time in a patient-derived xenograft mouse model. Thus, KSL-128114 is a novel promising candidate with therapeutic potential for highly aggressive tumors, such as GBM.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Peptídeos/química , Peptídeos/farmacologia , Sinteninas/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Camundongos , Microssomos/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Difração de Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Med Chem ; 62(19): 8819-8830, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509708

RESUMO

Targeting multiprotein receptor complexes, rather than receptors directly, is a promising concept in drug discovery. This is particularly relevant to the GABAB receptor complex, which plays a prominent role in many brain functions and diseases. Here, we provide the first studies targeting a key protein-protein interaction of the GABAB receptor complex-the interaction with KCTD proteins. By employing the µSPOT technology, we first defined the GABAB receptor-binding epitope mediating the KCTD interaction. Subsequently, we developed a highly potent peptide-based inhibitor that interferes with the KCTD/GABAB receptor complex and efficiently isolates endogenous KCTD proteins from mouse brain lysates. X-ray crystallography and SEC-MALS revealed inhibitor induced oligomerization of KCTD16 into a distinct hexameric structure. Thus, we provide a template for modulating the GABAB receptor complex, revealing a fundamentally novel approach for targeting GABAB receptor-associated neuropsychiatric disorders.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/metabolismo , Receptores de GABA-B/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Encéfalo/metabolismo , Cristalografia por Raios X , Polarização de Fluorescência , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Peptídeos/química , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptores de GABA-B/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
13.
Chembiochem ; 19(20): 2136-2145, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30073762

RESUMO

All proteins contain characteristic backbones formed of consecutive amide bonds, which can engage in hydrogen bonds. However, the importance of these is not easily addressed by conventional technologies that only allow for side-chain substitutions. By contrast, technologies such as nonsense suppression mutagenesis and protein ligation allow for manipulation of the protein backbone. In particular, replacing the backbone amide groups with ester groups, that is, amide-to-ester mutations, is a powerful tool to examine backbone-mediated hydrogen bonds. In this minireview, we showcase examples of how amide-to-ester mutations can be used to uncover pivotal roles of backbone-mediated hydrogen bonds in protein recognition, folding, function, and structure.


Assuntos
Amidas/química , Códon sem Sentido , Ésteres/química , Proteínas/química , Proteínas/genética , Ligação de Hidrogênio , Mutagênese , Conformação Proteica , Dobramento de Proteína
14.
Chembiochem ; 17(20): 1936-1944, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27472651

RESUMO

PDZ domains are ubiquitous small protein domains that are mediators of numerous protein-protein interactions, and play a pivotal role in protein trafficking, synaptic transmission, and the assembly of signaling-transduction complexes. In recent years, PDZ domains have emerged as novel and exciting drug targets for diseases (in the brain in particular), so understanding the molecular details of PDZ domain interactions is of fundamental importance. PDZ domains bind to a protein partner at either a C-terminal peptide or internal peptide motifs. Here, we examined the importance of a conserved Lys/Arg residue in the ligand-binding site of the second PDZ domain of PSD-95, by employing a semisynthetic approach. We generated six semisynthetic PDZ domains comprising different proteogenic and nonproteogenic amino acids representing subtle changes of the conserved Lys/Arg residue. These were tested with four peptide interaction partners, representing the two different binding modes. The results highlight the role of a positively charged amino acid in the ß1-ß2 loop of PDZ domains, and show subtle differences for canonical and noncanonical interaction partners, thus providing additional insight into the mechanism of PDZ/ligand interaction.


Assuntos
Dipeptídeos/metabolismo , Proteínas de Membrana/biossíntese , Domínios PDZ , Sítios de Ligação/efeitos dos fármacos , Dipeptídeos/química , Humanos , Ligantes , Proteínas de Membrana/química , Modelos Moleculares , Domínios PDZ/efeitos dos fármacos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA