RESUMO
A novel spectroscopic technique, photoluminescent ellipsometric circular dichroism (PECD), which distinguishes all radiative electronic transitions related to molecular chiral centers. Additionally, it is proposed as complementary to the ellipsometric Raman spectroscopy (ERS) technique, thus establishing a relationship between vibrational modes and electronic transitions, associated with molecular chiral centers. In this way, PECD turns into a powerful technique for chiral material characterization. The PECD technique was performed on a chiral oligomer (1R,2R)-diiminocyclohexane, and its derivative polymer. A complete photophysical characterization in solution was performed to corroborate the new PECD technique.
RESUMO
Molecular electronic devices based on few and single-molecules have the advantage that the electronic signature of the device is directly dependent on the electronic structure of the molecules as well as of the electrode-molecule junction. In this work, we use a two-step approach to synthesise functionalized nanomolecular electronic devices (nanoMoED). In first step we apply an organic solvent-based gold nanoparticle (AuNP) synthesis method to form either a 1-dodecanethiol or a mixed 1-dodecanethiol/ω-tetraphenyl ether substituted 1-dodecanethiol ligand shell. The functionalization of these AuNPs is tuned in a second step by a ligand functionalization process where biphenyldithiol (BPDT) molecules are introduced as bridging ligands into the shell of the AuNPs. From subsequent structural analysis and electrical measurements, we could observe a successful molecular functionalization in nanoMoED devices as well as we could deduce that differences in electrical properties between two different device types are related to the differences in the molecular functionalization process for the two different AuNPs synthesized in first step. The same devices yielded successful NO2gas sensing. This opens the pathway for a simplified synthesis/fabrication of molecular electronic devices with application potential.
RESUMO
Unambiguous information about spatiotemporal exciton dynamics in three-dimensional nanometer- to micrometer-sized organic structures is difficult to obtain experimentally. Exciton dynamics can be modified by annihilation processes, and different light propagation mechanisms can take place, such as active waveguiding and photon recycling. Since these various processes and mechanisms can lead to similar spectroscopic and microscopic signatures on comparable time scales, their discrimination is highly demanding. Here, we study individual organic single crystals grown from thiophene-based oligomers. We use time-resolved detection-beam scanning microscopy to excite a local singlet exciton population and monitor the subsequent broadening of the photoluminescence (PL) signal in space and on pico- to nanosecond time scales. Combined with Monte Carlo simulations, we were able to exclude photon recycling for our system, whereas leakage radiation upon active waveguiding leads to an apparent PL broadening of about 20% compared to the initial excitation profile. Exciton-exciton annihilation becomes important at high excitation fluence and apparently accelerates the exciton dynamics leading to apparently increased diffusion lengths. At low excitation fluences, the spatiotemporal PL broadening results from singlet exciton diffusion with diffusion lengths of up to 210 nm. Surprisingly, even in structurally highly ordered single crystals, the transport dynamics is subdiffusive and shows variations between different crystals, which we relate to varying degrees of static and dynamic electronic disorders.
RESUMO
In this study, the analysis of microelectronic and photonic structure in a one dimension program [AMPS-1D] has been successfully used to study organic solar cells. The program was used to optimize the performance of organic solar cells based on (carbazole-methylthiophene), benzothiadiazole and thiophene [(Cbz-Mth)-B-T]2 as electron donors, and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as an electron acceptor. The optoelectronic properties of these dyes were investigated by using the Density Functional Theory DFT/B3LYP/6-31G(d,p) method. We studied the influence of the variation of the thickness of the active layer, the temperature, and the density of the effective states of the electrons and the holes in the conduction and valence bands respectively on the performance of the solar cells based on [(Cbz-Mth)-BT]2-PCBM as a photoactive material, sandwiched between a transparent indium tin oxide (ITO) and an aluminum (Al) electrode. The addition of other thiophene units in the copolymer or the deposition of a layer of PEDOT between the anode (ITO) and the active layer, improves the performances of the cell, especially resulting in a remarkable increase in the value of the power conversion efficiency (PCE).
RESUMO
Chromium disilicide (CrSi2) particles were synthesized by using an arc melting furnace followed by mechanical milling. XRD and DLS analyses show that aggregates of around 3 µm containing about 10 nm sized crystallites were obtained. These aggregates were functionalized in solution by coupling agents with different anchoring groups (silane, phosphonic acid, alkene and thiol) in order to disperse them into an organic polymer. Dodecene was used to modify the CrSi2 surface during mechano-synthesis in a grinding bowl with quite little solvent quantity and the optimization step allowed the aggregate size to be reduced to 500 nm. A thermoelectric composite was then made of alkene CrSi2 grafted samples and poly(p-phénylène-2,6-benzobisoxazole). This study opens the route for new surface grafting of intermetallic silicides for applications linked to electronics and/or energy.
RESUMO
A new type of DNA ligand that contains a phosphate-binding group and a photoresponsive azobenzene moiety is reported. When the azobenzene is in trans configuration, the ligand binds to the minor groove of a double-stranded DNA, whereas it partially desorbs upon trans-cis isomerisation with light. The ability to photoswitch the ligand upon interaction with DNA is evidenced by (chir)optical signatures, and deciphered by the differences of binding geometry, stability, and dynamics of the DNA/ligand complexes for the two isomers. We exploit these properties to photomodulate DNA-templated self-assembly, through the incorporation of another π-stacking DNA ligand, which together with the photoresponsive ligand form mixed supramolecular complexes along DNA. Our study demonstrates that well-designed photoresponsive DNA binders can be used to modulate multicomponent supramolecular DNA assemblies.
Assuntos
DNA/química , Compostos Azo , Sítios de Ligação , Replicação do DNA , Dimerização , Ligantes , Luz , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Processos FotoquímicosRESUMO
Active optical waveguides based on functional small organic molecules in micro/nano regime have attracted great interest for their potential applications in high speed miniaturized photonic integrations. Here, we report on the active waveguiding properties of millimeter sized single crystals of a newly synthesized thiophene-based oligomer. These large crystals exhibit low optical loss compared to other organic nanostructures, and optical losses depend on the emission energy. Moreover, we find that the coupling of photoluminescence to waveguide modes is very efficient, typically greater than 40%. These features indicate that such perfect single crystals with a low density of defects and extremely smooth surfaces exhibit low propagation loss, which makes them good candidates for the design and the fabrication of novel organic optical fibers and lasers.
RESUMO
We studied the absorption line-shape of poly(p-phenylenevinylene) (PPV) films deposited via spin coating and Langmuir-Blodgett techniques with the intent of identifying the conjugation length distribution in these two types of films, a key morphological aspect of conjugated polymer films. We treated the excitons in the polymer as independent oligomer excitons and modeled the absorption spectra of the individual oligomers using simple expressions for the oligomer size dependence of the gap energy, the line-broadening factor, the transition dipole moment and the Huang-Rhys parameter. We validated these expressions by independent measurements on phenyl-based oligomers and Density Functional Theory calculations. Our results show clear evidence that, for both types of PPV films, the conjugation length distribution depends exponentially on the segment size. Our results also set a lower limit, of about ten repeat units, for the maximum exciton length of three different phenyl-based oligomers.
RESUMO
Self-assembled monolayers (SAMs) on gold were obtained by the direct absorption of a fully conjugated phenylenethienylene derivative () presenting robust silylethane-thiol protecting groups as anchoring agents. The thiol deprotection and SAM formation have been evidenced by quartz crystal microbalance (QCM) measurements and X-ray photoelectron spectroscopy (XPS), and have been compared to the SAM obtained from its thioacetate analog (5). The chemically robust silylethane-thiol protecting group appeared as a surprisingly effective anchoring agent for the preparation of aromatic SAMs on Au(111), suitable for subsequent post-functionalization.
RESUMO
The fluorescence of thin films of a diimine-substituted phenyleneethynylene compound can be efficiently quenched by nitroaromatic vapors, which is not the case for the unsubstituted parent compound. Thin-film porosity is usually considered to be an essential factor for efficient quenching, but in the present case the origin of the quenching is completely different, as both films are nonporous and hermetic to 2,4-dinitrotoluene (DNT) molecules. The molecular organization in the two crystallized thin films offers a low level of πâ stacking for both compounds, but the orientation of the phenylenethynylene fluorophore differs markedly with respect to the surface of the films. For the substituted compound, the fluorophore is almost parallel to the surface, thus making it readily available to molecules of a nitroaromatic quencher. This rationale is also observed in the case of a related compound bearing methoxy side chains instead of the long octyloxy moieties. Fluorescence-lifetime experiments show that the efficient quenching process in the nonporous crystallized films of the substituted compound is due to a fast (<70â ps) diffusion of excitons from the bulk of the film toward the surface where they are quenched, thus providing evidence of antenna effects.
RESUMO
The photophysical and nonlinear absorption properties of an oligo(phenylenethienylene)s series (nTBT) are investigated in this article. The length of the chromophore is gradually increased from one to four phenylenethienylene repeating units in order to evaluate the effects of the electronic delocalization on the two-photon absorption cross sections (δ). According to the excitation anisotropy measurements and quantum chemical calculations, two electronic transitions with distinctive symmetries, 1Ag â 1Bu and 1Ag â 2Ag, are present in the low energy region of the linear absorption spectrum. The lowest-energy transition 1Ag â 1Bu is one-photon allowed but two-photon forbidden and implies an electronic charge delocalization all along the oligomer segment whereas the weakly-allowed 1Ag â 2Ag transition exhibits a transition moment perpendicular to the average plane of the chromophore. The latter transition mainly contributes to the two-photon absorption ability of the oligomers. All derivatives are poorly solvatochromic and the breakdown of the mirror symmetry rule observed between absorption and fluorescence spectra at room temperature has been attributed to a photoinduced geometrical relaxation leading to a very efficient planarization process of the oligomer irrespective of its size. Increasing the oligomer length results in a slight shift of the two-photon absorption band (â¼1300 cm(-1)) and in a drastic increase of δ from 2 ± 1 GM up to 802 ± 160 GM for 1TBT and 4TBT respectively. Based on a three-level model, it was found that main contributions to the strong increase of δ stem from the transition moments Mge and Mee' which are multiplied by a factor of 2.8 and 5 when going from 1TBT to 4TBT.
Assuntos
Fótons , Polímeros/química , Adsorção , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria InfravermelhoRESUMO
A therapy of cancer cells: Two-photon-triggered camptothecin delivery with nanoimpellers was studied in MCF-7 breast cancer cells. A fluorophore with a high two-photon absorption cross-section was first incorporated in the nanoimpellers. Fluorescence resonance energy transfer (FRET) from the fluorophore to the azobenzene moiety was demonstrated.
Assuntos
Compostos Azo/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Humanos , NeoplasiasRESUMO
π-Conjugated thienylene-phenylene oligomers with fluorinated and dialkoxylated phenylene fragments have been designed and prepared to understand the interactions in fragment orbitals, the influence of the substituents (F, OMe) on the HOMO-LUMO gap, and the role of intramolecular non-covalent cumulative interactions in the construction of π-conjugated nanostructures. Their strong conjugation was also evidenced in the gas phase by UV photoelectron spectroscopy and theoretical calculations. These results can be explained by the crucial role of the relative energetic positions of the πâ orbitals of the dimethoxyphenylene, which was used to model the dialkoxyphenylene entity, in determining the π/π(*) orbital levels of the fluorinated phenylene entity. Dialkoxyphenylenes raise the HOMO orbitals, whereas fluorinated phenylenes lower the LUMO orbitals in the oligomers. In addition, the presence of Sâ â â F and Hâ â â F interactions in the fluorinated phenylene-thienylene compounds add to the Sâ â â O interactions in the mixed targets and contribute to the full conjugation in the oligomer, inducing weak inter-ring angles between the involved aromatic cycles. These results, which showed extended conjugation of the πâ system, were corroborated by a narrow HOMO-LUMO gap (according to DFT calculations) and by a relatively strong maximum wavelength (as obtained by TD-DFT calculations and experimental UV/Vis measurements). The crystallographic data of two mixed thienylene-(fluorinated and dialkoxylated phenylene) five-ring oligomers agree with the above results and show the formation of quasi-planar conformations with non-covalent Sâ â â O, Hâ â â F, and Sâ â â F interactions. These studies in the solid and gas phases show the relevance of associating dialkoxyphenylene and fluorinated phenylene fragments with thiophene to lead to oligomers with improved electronic delocalization for electronic or optoelectronic devices.
Assuntos
Cicloparafinas/química , Hidrocarbonetos Fluorados/química , Tiofenos/química , Modelos Moleculares , Conformação Molecular , Espectroscopia FotoeletrônicaRESUMO
Self-assembly of conjugated 2,5-dialkoxy-phenylene-thienylene-based oligomers on epitaxial monolayer graphene was studied in ultrahigh vacuum by low-temperature scanning tunneling microscopy (STM). The formation of long one-dimensional (1D) supramolecular chain-like structures has been observed, associated to a physical linking of their ends which involved the rotation of the end thiophene rings in order to allow π-π stacking of these end-groups. dI/dV maps taken at an energy corresponding to the excited states showed a continuous electronic density of states, which tentatively suggests that within such molecular chains conjugation of electrons is preserved even across physically linked molecules. Thus, in a self-organization process conjugation may be extended by appropriately adapting conformations of neighboring molecules. Our STM results on such self-organized end-linked molecules potentially represent a direct visualization of J-aggregates.
RESUMO
Two thiophene-phenylene semiconductors, bis(2-phenylethynyl) end-substituted oligothiophenes (diPhAc-nTs, n = 2, 3), were synthesized and studied with respect to their optical, electrochemical, structural and electrical properties. The optical and electrochemical properties of the oligomers in solution were investigated by UV-vis absorption and photoluminescence spectroscopies, and cyclic voltammetry. High vacuum evaporated thin films were investigated by optical absorption, X-ray diffraction and AFM, and implemented as p-type semiconducting layers into organic thin-film transistors (OTFTs). A comparative study in solution and in the solid state with distyryl-oligothiophenes (DSnTs, n = 2, 3) reveals the great influence of acetylenic (-C[triple bond]C-) vs. olefinic (-C=C-) spacers in thiophene-phenylene derivatives on electronic structure, physical properties, and device efficiencies. Substituting olefinic for acetylenic pi-spacers in terthiophene-based conjugated semiconductors leads to one of incontrovertible attributes of OTFTs for low cost applications, a high mobility at low substrate temperature (T(sub)) i.e. typically 25 degrees C. Fine-tuning in the HOMO/LUMO levels by reducing the HOMO level introduces increased air-oxidation strength of thin films where OTFTs provide exactly the same hole mobility value after 100 days in air. All the results suggested that introduction of carbon-carbon triple bonds provided an efficient route to highly air-stable organic thin film transistors.
RESUMO
This paper describes a system for the detection of nitroaromatic explosives consisting of a portable detector based on a specific fluorescent material. The developed sensor was able to perform an ultra trace detection of explosives, such as trinitrotoluene (TNT) or its derivate 2,4-dinitrotoluene (DNT), in ambient air or on objects tainted with explosives. In the presence of nitroaromatic vapors, the fluorescence of the material was found to decrease due to the adsorption of nitroaromatic molecules on its specific adsorption sites. The sensor exhibited a large sensitivity to TNT or DNT at their vapor pressures (respectively 6 and 148 ppbv) and the detection threshold was evaluated on a laboratory test setup and was found to be 0.75 ppbv for TNT. Moreover, the detector demonstrated no loss of performance in the presence of humidity or interfering compounds. All the tests led to the conclusion that the sensor fulfills the main requirements for the identification of suspect luggage, forensic analyses or battlefields clearing.
Assuntos
Ar/análise , Substâncias Explosivas/análise , Espectrometria de Fluorescência/métodos , Transporte de Elétrons , Substâncias Explosivas/química , Iminas/química , Laboratórios , Fenômenos Ópticos , VolatilizaçãoRESUMO
In investigations into the design and isolation of semiconducting nano-objects, the synthesis of a new bisureido pi-conjugated organogelator has been achieved. This oligo(phenylenethienylene) derivative was found to be capable of forming one-dimensional supramolecular assemblies, leading to the gelation of several solvents. Its self-assembling properties have been studied with different techniques (AFM, EFM, etc.). Nano-objects have successfully been fabricated from the pristine organogel under appropriate dilution conditions. In particular, nanorods and nanorings composed of the electroactive organogelator have been isolated and characterized. With additional support from an electrochemical study of the organogelator in solution, it has been demonstrated by the EFM technique that such nano-objects were capable of exhibiting charge transport properties, a requirement in the fabrication of nanoscale optoelectronic devices. It was observed that positive charges can be injected and delocalized all along an individual nano-object (nanorod and nanoring) over micrometers and, remarkably, that no charge was stored in the center of the nanoring. It was also observed that topographic constructions in the nanostructures prevent transport and delocalization. The same experiments were performed with a negative bias (i.e., electron injection), but no charge delocalization was observed. These results could be correlated with the nature of 1, which is a good electron-donor, so it can easily be oxidized, but can be reduced only with difficulty.
RESUMO
The introduction of the urea function as structure directing agent of diacetylene organogels (DA-OGs) has been achieved. Despite the urea function being one of the most frequently used structure directing agents for the formation of organogels, it has never been exploited in the fabrication and photopolymerization of DA-OGs. The self-association of ureas involving two hydrogen bonds is much stronger than that of urethanes or amides, and the resulting supramolecular assemblies are completely insoluble. In this context, 1,1'-(hexa-2,4-diyne-1,6-diyl)bis(3-(10-(triethoxysilyl)decyl)urea) 2 was synthesized. Compound 2 was soluble owing to the triethoxysilane function that we recently used in the fabrication of a silylated bis-urea-stilbene organogel. It formed an organogel, and its photopolymerization was studied in cyclohexane. The loss of the gel state and the formation of a red solution resulting from the polymerization were found to be the result of the constraints introduced by the urea function in close vicinity to the polymerizable function. To obtain an ureido substituted diacetylenic organogelator affording a blue highly conjugated polydiacetylene (PDA) without a sol-gel transition, a propylene spacer was introduced to move the urea function away from the polymerizable function (derivative 3). The thermochromism exhibited by the latter in the solid state was studied. Using the same setup and the same sample, UV-vis and FTIR spectra were simultaneously recorded as a function of the temperature to highlight a relation between color changes and urea association mode changes. The data showed that the reversible thermochromic transition must be associated with a reversible supramolecular modification and, conversely, that irreversible chromic transitions are the result of irreversible structural modifications. The chromic effects of the acidic hydrolysis-polycondensation of the trialkoxysilyl groups to form a siloxane network were studied on a thin film of 3. In the same way, solvent effects on the color of the organogels of 3 were also investigated. Correlations could be established between the different stimuli. These results provide a deeper understanding of the precise molecular mechanism of the blue to red transition and of the reversibility of the purple to red transition generally encountered in PDA thermochromism.
RESUMO
A new approach to control molecular aggregation of pi-conjugated chromophores in the solid state has been investigated. Our strategy was to use a modifiable bulky fragment which should induce a J-aggregation and offer the possibility to reach an H-aggregation upon its chemical modification by lateral slip of pi-conjugated molecules. The chosen fragment for that purpose was the hydrolyzable triethoxysilane function (Si(OEt)3). Our objective was to design and synthesize electroluminescent or solar cell hybrid organic-inorganic materials by the sol-gel process applied to a bifunctionalized silane. With this intention, the synthesis of the sol-gel processable phenylenevinylenediimide silsesquioxane 6 was accomplished and the study of spin-coated thin films of the pure silane precursor subjected or not to the sol-gel process has been carried out. Optical properties of 6 are consistent with the formation of J-aggregates in the solid state due to the steric hindrance introduced by the triethoxysilane units. Conversely, the spectroscopic behavior observed for the hybrid film 6F is attributed to an H-aggregation corresponding to a "card pack" orientation of the distyrylbenzeneimide chromophores in the compressed silicate network. Morevover, 6 and 6F also exhibited different electronic behaviors: light-emitting diodes exhibited high brightness with the native precursor 6 and almost no light output with the sol-gel processed silsesquioxane 6F. Photovoltaic cells showed the opposite behavior with low photocurrent generation in the precursor case and higher photocurrents with the sol-gel processed layers. These results provide a deeper understanding of the present self-assembly process that is strongly governed by the molecular packing of the oligosiloxane precursor.
RESUMO
New chiral pi-conjugated polymers consisting of alternating conjugated segments and (1R,2R)-diiminocyclohexane units with C2 symmetry were prepared by a palladium-catalyzed coupling reaction, they exhibited very high specific optical rotations ([alpha] up to -3000 degrees) and strong Cotton effects ([theta] 10(6) deg cm2 mol-1).