RESUMO
Nonsymmetric diarylethenes with an additional "stiff" cyclohexenol ring undergo various types of tandem transformations launched by light-induced 6π-photocyclization. Among these, there are two novel reactions (formal [1,3]-H migration and complete aromatization to an anthracene derivative) as well as photorearrangement and formal methane elimination. This diverse reactivity demonstrates the great potential of semi-stiff-diarylethenes in synthetic photochemistry.
RESUMO
The study of the physiological and pathophysiological processes under extreme conditions facilitates a better understanding of the state of a healthy organism and can also shed light on the pathogenesis of diseases. In recent years, it has become evident that gravitational stress affects both the whole organism and individual cells. We have previously demonstrated that simulated microgravity inhibits proliferation, induces apoptosis, changes morphology, and alters the surface marker expression of megakaryoblast cell line MEG-01. In the present work, we investigate the expression of cell cycle cyclins in MEG-01 cells. We performed several experiments for 24 h, 72 h, 96 h and 168 h. Flow cytometry and Western blot analysis demonstrated that the main change in the levels of cyclins expression occurs under conditions of simulated microgravity after 96 h. Thus, the level of cyclin A expression showed an increase in the RPM group during the first 4 days, followed by a decrease, which, together with the peak of cyclin D, may indicate inhibition of the cell cycle in the G2 phase, before mitosis. In addition, based on the data obtained by PCR analysis, we were also able to see that both cyclin A and cyclin B expression showed a peak at 72 h, followed by a gradual decrease at 96 h. STED microscopy data also confirmed that the main change in cyclin expression of MEG-01 cells occurs at 96 h, under simulated microgravity conditions, compared to static control. These results suggested that the cell cycle disruption induced by RPM-simulated microgravity in MEG-01 cells may be associated with the altered expression of the main regulators of the cell cycle. Thus, these data implicate the development of cellular stress in MEG-01 cells, which may be important for proliferating human cells exposed to microgravity in real space.
Assuntos
Ciclo Celular , Ciclinas , Simulação de Ausência de Peso , Humanos , Linhagem Celular , Ciclinas/metabolismo , Ciclinas/genética , Células Progenitoras de Megacariócitos/metabolismo , Células Progenitoras de Megacariócitos/citologia , Ciclina A/metabolismo , Ciclina A/genética , Proliferação de Células , Ciclina B/metabolismo , Ciclina B/genéticaRESUMO
There is incessant interest in the transfer of common chemical processes from organic solvents to water, which is vital for the development of bioinspired and green chemical technologies. Diarylethenes feature a rich photochemistry, including both irreversible and reversible reactions that are in demand in organic synthesis, materials chemistry, and photopharmacology. Herein, we introduce the first versatile class of diarylethenes, namely, potassium 2,3-diarylmaleates (DAMs), that show excellent solubility in water. DAMs obtained from highly available precursors feature a full spectrum of photoactivity in water and undergo irreversible reactions (oxidative cyclization or rearrangement) or reversible photocyclization (switching), depending on their structure. This finding paves a way towards wider application of diarylethenes in photopharmacology and bioinspired technologies that require aqueous media for photochemical reactions.
RESUMO
The risk of malignant tumor development is increasing in the world. Obesity is an established risk factor for various malignancies. There are many metabolic alterations associated with obesity which promote cancerogenesis. Excessive body weight leads to increased levels of estrogens, chronic inflammation and hypoxia, which can play an important role in the development of malignancies. It is proved that calorie restriction can improve the state of patients with various diseases. Decreased calorie uptake influences lipid, carbohydrate and protein metabolism, hormone levels and cell processes. Many investigations have been devoted to the effects of calorie restriction on cancer development in vitro and in vivo. It was revealed that fasting can regulate the activity of the signal cascades including AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), p53, mTOR, insulin/ insulin-like growth factor 1 (IGF1) and JAK-STAT. Up- or down-regulation of the pathways results in the decrease of cancer cell proliferation, migration and survival and the increase of apoptosis and effects of chemotherapy. The aim of this review is to discuss the connection between obesity and cancer development and the mechanisms of calorie restriction influence on cancerogenesis that stress the importance of further research of calorie restriction effects for the inclusion of this approach in clinical practice.
Assuntos
Restrição Calórica , Neoplasias , Humanos , Obesidade/complicações , Fatores de Risco , Peso Corporal , Neoplasias/complicaçõesRESUMO
Platelets are one of the main participants in vascular accidents in cases of coronary heart disease (CHD). In this study, we sought to detect platelet apoptosis in patients with coronary artery disease who underwent scheduled myocardial revascularization surgery. To identify apoptotic events, we analyzed phosphatidylserine (PS) expression on the surface of platelets and mitochondrial membrane potential (ΔΨm) by flow cytometry in two groups of 30 patients aged 45-60 years: Group 1-patients before myocardial revascularization surgery and group 2-patients after myocardial revascularization surgery. The control group consisted of 10 healthy volunteers aged 45-60 years. According to our data, the percentage levels of PS expression in patients greatly decreased after surgery. We confirmed platelet apoptosis by recording depolarization of ΔΨm in pre- and postoperative patients. ΔΨm readings were considerably improved after surgery. Our data indicated that the functional parameters of platelets in patients with coronary heart disease differed from the characteristics of platelets in patients who underwent myocardial revascularization, and from those of patients in a control group. Future studies of platelet phenotypic characteristics and platelet apoptosis biomarkers should greatly advance our understanding of the pathophysiology of coronary heart disease, and further promote the development of methods for predicting adverse outcomes after surgery.
RESUMO
The aim of the study was to investigate the dynamics of the state of allo- and autografts of skin on a wound using optical modalities: diffuse reflectance spectroscopy (DRS), optical coherence tomography (OCT), and laser Doppler flowmetry (LDF). A deep thermal burn was simulated in 24 rats covering 20% of the body surface. On day 3 after the injury, a fascial necrectomy of two 500 mm2 areas on the left and right sides of the midline of the animal body were excised. Allografts and autografts were placed in the centers of these areas. Optical measurements of grafts were performed on the 0, 3rd, 6th, 10th, and 13th days after transplantation. The allografts demonstrated a pronounced decrease in oxygenation, blood content, and perfusion compared to autografts on the 6th day; in the following days of observation, these values returned to the average values of autografts. Water content gradually decreased from the beginning to the end of observation. In conclusion, optical diagnostics revealed changes in the morphological microstructure, the rate of restoration of blood circulation, and oxygen exchange in the early stages, specific for the allo- and autograft.
RESUMO
We report on the comparative analysis of self-calibrating and single-slope diffuse reflectance spectroscopy in resistance to different measurement perturbations. We developed an experimental setup for diffuse reflectance spectroscopy (DRS) in a wide VIS-NIR range with a fiber-optic probe equipped with two source and two detection fibers capable of providing measurements employing both single- and dual-slope (self-calibrating) approaches. In order to fit the dynamic range of a spectrometer in the wavelength range of 460-1030 nm, different exposure times have been applied for short (2 mm) and long (4 mm) source-detector distances. The stability of the self-calibrating and traditional single-slope approaches to instrumental perturbations were compared in phantom and in vivo studies on human palm, including attenuations in individual channels, fiber curving, and introducing optical inhomogeneities in the probe-tissue interface. The self-calibrating approach demonstrated high resistance to instrumental perturbations introduced in the source and detection channels, while the single-slope approach showed resistance only to perturbations introduced into the source channels.
RESUMO
BACKGROUND: Melanoma is a highly heterogeneous malignant tumor that exhibits various forms of drug resistance. Recently, reversal transition of cancer cells to the G0 phase of the cell cycle under the influence of therapeutic drugs has been identified as an event associated with tumor dissemination. In the present study, we investigated the ability of chemotherapeutic agent dacarbazine to induce a transition of melanoma cells to the G0 phase as a mechanism of chemoresistance. METHODS: We used the flow cytometry to analyze cell distribution within cell cycle phases after dacarbazine treatment as well as to identifyG0 -positive cells population. Transcriptome profiling was provided to determine genes associated with dacarbazine resistance. We evaluated the activity of ß-galactosidase in cells treated with dacarbazine by substrate hydrolysis. Cell adhesion strength was measured by centrifugal assay application with subsequent staining of adhesive cells with Ki-67 monoclonal antibodies. Ability of melanoma cells to metabolize dacarbazine was determined by expressional analysis of CYP1A1, CYP1A2, CYP2E1 followed by CYP1A1 protein level evaluation by the ELISA method. RESULTS: The present study determined that dacarbazine treatment of melanoma cells could induce an increase in the percentage of cells in G0 phase without alterations of ß-galactosidase positive cells which corresponded to the fraction of the senescent cells. Transcriptomic profiling of cells under dacarbazine induction of G0 -positive cells percentage revealed that 'VEGFA-VEGFR2 signaling pathway' and 'Cell cycle' signaling were mostly enriched by dysregulated genes. 'Focal adhesion' signaling was also found to be triggered by dacarbazine. In melanoma cells treated with dacarbazine, an increase in G0 -positive cells among adherent cells was found. CONCLUSIONS: Dacarbazine induces the alteration in a percentage of melanoma cells residing in G0 phase of a cell cycle. The altered adhesive phenotype of cancer cells under transition in the G0 phase may refer to a specific intercellular communication pattern of quiescent/senescent cancer cells.
Assuntos
Melanoma , Humanos , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Ciclo Celular , Divisão CelularRESUMO
Wheat stem rust, caused by Puccinia graminis f. sp. tritici, which used to be a harmful disease of winter wheat in the southern part of Russia, has been largely affecting the yield of spring bread wheat in the territories of the temperate climate zone since 2009. In total, 222 P. graminis f. sp. tritici isolates were obtained from samples of susceptible cultivars of spring bread wheat in Central and Volga regions and Omsk and Novosibirsk provinces in 2019. Genotyping of the isolates was carried out at 16 simple-sequence repeat (SSR) loci. Number of alleles, proportion of heterozygotes, and deviation from Hardy-Weinberg equilibrium were determined at each SSR locus. Based on genetic variability of SSR genotypes, it was shown that the P. graminis f. sp. tritici population is subdivided into two large clusters in the territory of the Russian temperate climate zone: the "European" population (the Central region) and the "Asian" one (the Volga region and two main wheat provinces of Western Siberia). Both of the P. graminis f. sp. tritici populations are characterized by a mixed mode of reproduction (sexual and clonal) but different sources of inoculum seem to shape a genotype structure within them. A group of P. graminis f. sp. tritici genotypes with high variability, the inbreeding coefficient closed to zero, and low observed heterozygosity was revealed among samples from Omsk. Moreover, two singular SSR genotypes identified among the Asian samples of P. graminis f. sp. tritici isolates should attract special attention in the monitoring of stem rust in order to disclose unexpected rapid changes of the pathogen in the corresponding regions and to prevent disease outbreak.
Assuntos
Basidiomycota , Pão , Doenças das Plantas , Basidiomycota/genética , Genótipo , Federação RussaRESUMO
Photoinduced charge transfer affects the efficiency and selectivity of photochemical reactions. Incorporation of donating groups into the isoquinolinium core allowed us to overcome the photochemical inactivity of the corresponding dithienyl-substituted terarylenes, presumably by redirecting the charge transfer within the molecule, and gave access to a new family of thermally reversible photoswitches.
RESUMO
Fluorescence imaging modalities are currently a routine tool for the assessment of marker distribution within biological tissues, including monitoring of fluorescent photosensitizers (PSs) in photodynamic therapy (PDT). Conventional fluorescence imaging techniques provide en-face two-dimensional images, while depth-resolved techniques require complicated tomographic modalities. In this paper, we report on a cost-effective approach for the estimation of fluorophore localization depth based on dual-wavelength probing. Owing to significant difference in optical properties of superficial biotissues for red and blue ranges of optical spectra, simultaneous detection of fluorescence excited at different wavelengths provides complementary information from different measurement volumes. Here, we report analytical and numerical models of the dual-wavelength fluorescence imaging of PS-containing biotissues considering topical and intravenous PS administration, and demonstrate the feasibility of this approach for evaluation of the PS localization depth based on the fluorescence signal ratio. The results of analytical and numerical simulations, as well as phantom experiments, were translated to the in vivo imaging to interpret experimental observations in animal experiments, human volunteers, and clinical studies. The proposed approach allowed us to estimate typical accumulation depths of PS localization which are consistent with the morphologically expected values for both topical PS administration and intravenous injection.
RESUMO
Radiation therapy is one of the cardinal approaches in the treatment of malignant tumors of the pelvis. It leads to the development of radiation-induced complications in the normal tissues. Thus, the evaluation of radiation-induced changes in the extracellular matrix of the normal tissue is deemed urgent, since connective tissue stroma degradation plays a crucial role in the development of Grade 3-4 adverse effects (hemorrhage, necrosis, and fistula). Such adverse effects not only drastically reduce the patients' quality of life but can also become life-threatening. The aim of this study is to quantitatively analyze the bladder collagen state in patients who underwent radiation therapy for cervical and endometrial cancer and in patients with chronic bacterial cystitis and compare them to the normal bladder extracellular matrix. MATERIALS AND METHODS: One hundred and five patients with Grade 2-4 of radiation cystitis, 67 patients with bacterial chronic cystitis, and 20 volunteers without bladder pathology were enrolled. Collagen changes were evaluated depending on its hierarchical level: fibrils and fibers level by atomic force microscopy; fibers and bundles level by two-photon microscopy in the second harmonic generation (SHG) mode; general collagen architectonics by cross-polarization optical coherence tomography (CP OCT). RESULTS: The main sign of the radiation-induced damage of collagen fibrils and fibers was the loss of the ordered "basket-weave" packing and a significant increase in the total area of ruptures deeper than 1 µm compared to the intact sample. The numerical analysis of SHG images detected that a decrease in the SHG signal intensity of collagen is correlated with the increase in the grade of radiation cystitis. The OCT signal brightness in cross-polarization images demonstrated a gradual decrease compared to the intact bladder depending on the grade of the adverse event. CONCLUSIONS: The observed correspondence between the extracellular matrix changes at the microscopic level and at the level of the general organ architectonics allows for the consideration of CP OCT as a method of "optical biopsy" in the grading of radiation-induced collagen damage.
RESUMO
We propose a laser optoacoustic method for the complex characterization of crude oil pollution of the water surface by the thickness of the layer, the speed of sound, the coefficient of optical absorption, and the temperature dependence of the Grüneisen parameter. Using a 532 nm pulsed laser and a 1-100 MHz ultra-wideband ultrasonic antenna, we have demonstrated the capability of accurate (>95%) optoacoustic thickness measurements in the 5 to 500-micron range, covering 88% of slicks observed during 2010 oil spill in the Gulf of Mexico. In the thermal relaxation regime of optoacoustic measurements, the value of optical absorption coefficient (30 mm-1) agreed with the data of independent spectrophotometric measurements, while the sound speed (1430 m/s) agreed with the tabular data. When operating in a nonlinear regime, the effect of local deformation of the surface of the oil film induced by heating laser radiation was revealed. The dose-time parameters of laser radiation ensuring the transition from the thermal relaxation regime of optoacoustic generation to nonlinear one were experimentally investigated. The developed OA method has potential for quantitative characterization of not only the volume, but also the degree and even the type of oil pollution of the water surface.
Assuntos
Poluição por Petróleo , Petróleo , Lasers , Tensoativos , UltrassomRESUMO
The goal of this study is a comparative analysis of the efficiency of the PDT protocols for CT26 tumor model treatment in Balb/c mice employing red and blue light with both topical and intravenous administration of chlorin-based photosensitizers (PSs). The considered protocols include the doses of 250 J/cm2 delivered at 660 nm, 200 J/cm2 delivered at 405 nm, and 250 J/cm2 delivered at both wavelengths with equal energy density contribution. Dual-wavelength fluorescence imaging was employed to estimate both photobleaching efficiency, typical photobleaching rates and the procedure impact depth, while optical coherence tomography with angiography modality (OCT-A) was employed to monitor the tumor vasculature response for up to 7 days after the procedure with subsequent histology inspection. Red light or dual-wavelength PDT regimes with intravenous PS injection were demonstrated to provide the most pronounced tumor response among all the considered cases. On the contrary, blue light regimes were demonstrated to be most efficient among topical application and irradiation only regimes. Tumor size dynamics for different groups is in good agreement with the tumor response predictions based on OCT-A taken in 24h after exposure and the results of histology analysis performed in 7 days after the exposure.
RESUMO
Melanoma is one of the most aggressive types of malignant tumors, commonly affecting young individuals. The treatment of metastatic tumors remains obscure due to the resistance of tumor cells to drugs mediated by various mechanisms. The acquisition of a resistant phenotype is associated with both genetic and epigenetic alterations in cancer cells. Therefore, the current study aimed to investigate whether microRNA (miR)-204-5p could promote alterations in the cell cycle and apoptosis of dacarbazine (DTIC)-treated melanoma cells. Quantitative real time PCR showed that transfection of DTIC-treated SK-MEL-2 melanoma cells with miR-204-5p mimics significantly upregulated miR-204-5p. However, flow cytometric analysis revealed that the proportion of cells in different phases of the cell cycle remained unchanged. Additionally, the proportion of early apoptotic cells was notably enhanced following cell treatment with DTIC, accompanied by a profound increase in Ki-67 negative cells, as verified by an immunofluorescence assay. Furthermore, miR-204-5p overexpression reduced the percentage of early apoptotic DTIC-treated melanoma cells. The proportion of Ki-67 negative cells was only increased by 3%. Overall, the results of the current study indicated that miR-204-5p overexpression could mostly attenuate cell apoptosis in DTIC-treated cells rather than promote their transition from the G0 phase of the cell cycle in response to chemotherapeutic agent-induced stress.
Assuntos
Melanoma , MicroRNAs , Humanos , Dacarbazina/farmacologia , Antígeno Ki-67 , Melanoma/tratamento farmacológico , Melanoma/genética , Apoptose/genética , MicroRNAs/genéticaRESUMO
The newly developed multimodal imaging system combining raster-scan optoacoustic (OA) microscopy and fluorescence (FL) wide-field imaging was used for characterizing the tumor vascular structure with 38/50 µm axial/transverse resolution and assessment of photosensitizer fluorescence kinetics during treatment with novel theranostic agents. A multifunctional photoactivatable multi-inhibitor liposomal (PMILs) nano platform was engineered here, containing a clinically approved photosensitizer, Benzoporphyrin derivative (BPD) in the bilayer, and topoisomerase I inhibitor, Irinotecan (IRI) in its inner core, for a synergetic therapeutic impact. The optimized PMIL was anionic, with the hydrodynamic diameter of 131.6 ± 2.1 nm and polydispersity index (PDI) of 0.05 ± 0.01, and the zeta potential between -14.9 ± 1.04 to -16.9 ± 0.92 mV. In the in vivo studies on BALB/c mice with CT26 tumors were performed to evaluate PMILs' therapeutic efficacy. PMILs demonstrated the best inhibitory effect of 97% on tumor growth compared to the treatment with BPD-PC containing liposomes (PALs), 81%, or IRI containing liposomes (L-[IRI]) alone, 50%. This confirms the release of IRI within the tumor cells upon PMILs triggering by NIR light, which is additionally illustrated by FL monitoring demonstrating enhancement of drug accumulation in tumor initiated by PDT in 24 h after the treatment. OA monitoring revealed the largest alterations of the tumor vascular structure in the PMILs treated mice as compared to BPD-PC or IRI treated mice. The results were further corroborated with histological data that also showed a 5-fold higher percentage of hemorrhages in PMIL treated mice compared to the control groups. Overall, these results suggest that multifunctional PMILs simultaneously delivering PDT and chemotherapy agents along with OA and FL multi-modal imaging offers an efficient and personalized image-guided platform to improve cancer treatment outcomes.
RESUMO
Modern trends in optical bioimaging require novel nanoproducts combining high image contrast with efficient treatment capabilities. Silicon nanoparticles are a wide class of nanoobjects with tunable optical properties, which has potential as contrasting agents for fluorescence imaging and optical coherence tomography. In this paper we report on developing a novel technique for fabricating silicon nanoparticles by means of picosecond laser ablation of porous silicon films and silicon nanowire arrays in water and ethanol. Structural and optical properties of these particles were studied using scanning electron and atomic force microscopy, Raman scattering, spectrophotometry, fluorescence, and optical coherence tomography measurements. The essential features of the fabricated silicon nanoparticles are sizes smaller than 100 nm and crystalline phase presence. Effective fluorescence and light scattering of the laser-ablated silicon nanoparticles in the visible and near infrared ranges opens new prospects of their employment as contrasting agents in biophotonics, which was confirmed by pilot experiments on optical imaging.
Assuntos
Terapia a Laser , Nanopartículas , Nanofios , Porosidade , SilícioRESUMO
This study addresses the inkjet printing approach for fabrication of cellulose nanocrystalline (CNC) patterns with tunable optical properties varied by the thickness of deposited layers. In particular, forming functional patterns visible only in linearly polarized light is of the primary interest. The possibility of controlling the bright iridescent color response associated with the birefringence in the chiral anisotropic structure of inkjet-printed layers of CNC with sulfo-groups (s-CNC) has been thoroughly investigated. In this connection, we have elaborated an appropriate synthesis sequence for deriving printable inks in the form of sedimentation-stable s-CNC colloids with various concentrations of solid phase and experimentally determined the optimal regimes of their inkjet printing. For this purpose, the rheological parameters and s-CNC particle concentration have also been optimized. The study is accomplished with a comprehensive optical characterization of the deposited s-CNC layers with variable thickness, drying conditions, and the polarization state. The experimental results demonstrate the feasibility of inkjet printing technology to perform the precise fabrication of optically active s-CNC patterns with variable optical properties. These results are particularly relevant for applications requiring special conditions of color demonstration in security printing for such as anticounterfeiting applications, polygraphy decoration printing, and color photo filters.
RESUMO
Cerebrovascular imaging of rodents is one of the trending applications of optoacoustics aimed at studying brain activity and pathology. Imaging of deep brain structures is often hindered by sub-optimal arrangement of the light delivery and acoustic detection systems. In our work we revisit the physics behind opto-acoustic signal generation for theoretical evaluation of optimal laser wavelengths to perform cerebrovascular optoacoustic angiography of rodents beyond the penetration barriers imposed by light diffusion in highly scattering and absorbing brain tissues. A comprehensive model based on diffusion approximation was developed to simulate optoacoustic signal generation using optical and acoustic parameters closely mimicking a typical murine brain. The model revealed three characteristic wavelength ranges in the visible and near-infrared spectra optimally suited for imaging cerebral vasculature of different size and depth. The theoretical conclusions are confirmed by numerical simulations while in vivo imaging experiments further validated the ability to accurately resolve brain vasculature at depths ranging between 0.7 and 7 mm.
RESUMO
[This corrects the article DOI: 10.1039/C9RA08114C.].