Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Neurol ; 271(5): 2285-2297, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430271

RESUMO

BACKGROUND: Stroke is a leading cause of morbidity and mortality. Retinal imaging allows non-invasive assessment of the microvasculature. Consequently, retinal imaging is a technology which is garnering increasing attention as a means of assessing cardiovascular health and stroke risk. METHODS: A biomedical literature search was performed to identify prospective studies that assess the role of retinal imaging derived biomarkers as indicators of stroke risk. RESULTS: Twenty-four studies were included in this systematic review. The available evidence suggests that wider retinal venules, lower fractal dimension, increased arteriolar tortuosity, presence of retinopathy, and presence of retinal emboli are associated with increased likelihood of stroke. There is weaker evidence to suggest that narrower arterioles and the presence of individual retinopathy traits such as microaneurysms and arteriovenous nicking indicate increased stroke risk. Our review identified three models utilizing artificial intelligence algorithms for the analysis of retinal images to predict stroke. Two of these focused on fundus photographs, whilst one also utilized optical coherence tomography (OCT) technology images. The constructed models performed similarly to conventional risk scores but did not significantly exceed their performance. Only two studies identified in this review used OCT imaging, despite the higher dimensionality of this data. CONCLUSION: Whilst there is strong evidence that retinal imaging features can be used to indicate stroke risk, there is currently no predictive model which significantly outperforms conventional risk scores. To develop clinically useful tools, future research should focus on utilization of deep learning algorithms, validation in external cohorts, and analysis of OCT images.


Assuntos
Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Doenças Retinianas/diagnóstico por imagem , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/patologia , Medição de Risco , Retina/diagnóstico por imagem , Retina/patologia
2.
Genet Med ; 26(3): 101036, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38054408

RESUMO

PURPOSE: Genetic variants at the low end of the penetrance spectrum have historically been challenging to interpret because their high population frequencies exceed the disease prevalence of the associated condition, leading to a lack of clear segregation between the variant and disease. There is currently substantial variation in the classification of these variants, and no formal classification framework has been widely adopted. The Clinical Genome Resource Low Penetrance/Risk Allele Working Group was formed to address these challenges and promote harmonization within the clinical community. METHODS: The work presented here is the product of internal and community Likert-scaled surveys in combination with expert consensus within the Working Group. RESULTS: We formally recognize risk alleles and low-penetrance variants as distinct variant classes from those causing highly penetrant disease that require special considerations regarding their clinical classification and reporting. First, we provide a preferred terminology for these variants. Second, we focus on risk alleles and detail considerations for reviewing relevant studies and present a framework for the classification these variants. Finally, we discuss considerations for clinical reporting of risk alleles. CONCLUSION: These recommendations support harmonized interpretation, classification, and reporting of variants at the low end of the penetrance spectrum.


Assuntos
Variação Genética , Humanos , Alelos , Variação Genética/genética , Penetrância , Frequência do Gene
3.
Orphanet J Rare Dis ; 18(1): 265, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667371

RESUMO

BACKGROUND: Gyrate atrophy of the choroid and retina is a rare autosomal recessive metabolic disorder caused by biallelic variants in the OAT gene, encoding the enzyme ornithine δ-aminotransferase. Impaired enzymatic activity leads to systemic hyperornithinaemia, which in turn underlies progressive chorioretinal degeneration. In this study, we describe the clinical and molecular findings in a cohort of individuals with gyrate atrophy. METHODS: Study participants were recruited through a tertiary UK clinical ophthalmic genetic service. All cases had a biochemical and molecular diagnosis of gyrate atrophy. Retrospective phenotypic and biochemical data were collected using electronic healthcare records. RESULTS: 18 affected individuals from 12 families (8 male, 10 female) met the study inclusion criteria. The median age at diagnosis was 8 years (range 10 months - 33 years) and all cases had hyperornithinaemia (median: 800 micromoles/L; range: 458-1244 micromoles/L). Common features at presentation included high myopia (10/18) and nyctalopia (5/18). Ophthalmic findings were present in all study participants who were above the age of 6 years. One third of patients had co-existing macular oedema and two thirds developed pre-senile cataracts. Compliance with dietary modifications was suboptimal in most cases. A subset of participants had extraocular features including a trend towards reduced fat-free mass and developmental delay. CONCLUSIONS: Our findings highlight the importance of multidisciplinary care in families with gyrate atrophy. Secondary ophthalmic complications such as macular oedema and cataract formation are common. Management of affected individuals remains challenging due to the highly restrictive nature of the recommended diet and the limited evidence-base for current strategies.


Assuntos
Catarata , Atrofia Girata , Edema Macular , Humanos , Feminino , Masculino , Lactente , Criança , Atrofia Girata/genética , Estudos Retrospectivos , Retina
4.
J Med Genet ; 60(12): 1245-1249, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37460203

RESUMO

Albinism is a clinically and genetically heterogeneous group of conditions characterised by visual abnormalities and variable degrees of hypopigmentation. Multiple studies have demonstrated the clinical utility of genetic investigations in individuals with suspected albinism. Despite this, the variation in the provision of genetic testing for albinism remains significant. One key issue is the lack of a standardised approach to the analysis of genomic data from affected individuals. For example, there is variation in how different clinical genetic laboratories approach genotypes that involve incompletely penetrant alleles, including the common, 'hypomorphic' TYR c.1205G>A (p.Arg402Gln) [rs1126809] variant. Here, we discuss the value of genetic testing as a frontline diagnostic tool in individuals with features of albinism and propose a practice pattern for the analysis of genomic data from affected families.


Assuntos
Albinismo Oculocutâneo , Albinismo , Humanos , Albinismo/genética , Albinismo/diagnóstico , Albinismo Oculocutâneo/diagnóstico , Albinismo Oculocutâneo/genética , Testes Genéticos , Genótipo , Alelos
5.
Sci Rep ; 13(1): 9984, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340071

RESUMO

Primary open angle glaucoma (POAG) is a chronic, adult-onset optic neuropathy associated with characteristic optic disc and/or visual field changes. With a view to identifying modifiable risk factors for this common neurodegenerative condition, we performed a 'phenome-wide' univariable Mendelian randomisation (MR) study that involved analysing the relationship between 9661 traits and POAG. Utilised analytical approaches included weighted mode based estimation, the weighted median method, the MR Egger method and the inverse variance weighted (IVW) approach. Eleven traits related to POAG risk were identified including: serum levels of the angiopoietin-1 receptor (OR [odds ratio] = 1.11, IVW p = 2.34E-06) and the cadherin 5 protein (OR = 1.06, IVW p = 1.31E-06); intraocular pressure (OR = 2.46-3.79, IVW p = 8.94E-44-3.00E-27); diabetes (OR = 5.17, beta = 1.64, IVW p = 9.68E-04); and waist circumference (OR = 0.79, IVW p = 1.66E-05). Future research focussing on the effects of adiposity, cadherin 5 and angiopoietin-1 receptor on POAG development and progression is expected to provide key insights that might inform the provision of lifestyle modification advice and/or the development of novel therapies.


Assuntos
Angiopoietina-1 , Glaucoma de Ângulo Aberto , Adulto , Humanos , Glaucoma de Ângulo Aberto/epidemiologia , Glaucoma de Ângulo Aberto/genética , Causalidade , Fenômica , Fenótipo , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
6.
Genes (Basel) ; 14(4)2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-37107549

RESUMO

Non-traumatic ectopia lentis can be isolated or herald an underlying multisystemic disorder. Technological advances have revolutionized genetic testing for many ophthalmic disorders, and this study aims to provide insights into the clinical utility of genetic analysis in paediatric ectopia lentis. Children that underwent lens extraction for ectopia lentis between 2013 and 2017 were identified, and gene panel testing findings and surgical outcomes were collected. Overall, 10/11 cases received a probable molecular diagnosis. Genetic variants were identified in four genes: FBN1 (associated with Marfan syndrome and cardiovascular complications; n = 6), ADAMTSL4 (associated with non-syndromic ectopia lentis; n = 2), LTBP2 (n = 1) and ASPH (n = 1). Parents appeared unaffected in 6/11 cases; the initial presentation of all six of these children was to an ophthalmologist, and only 2/6 had FBN1 variants. Notably, 4/11 cases required surgery before the age of 4 years, and only one of these children carried an FBN1 variant. In summary, in this retrospective cohort study, panel-based genetic testing pointed to a molecular diagnosis in >90% of paediatric ectopia lentis cases requiring surgery. In a subset of study participants, genetic analysis revealed changes in genes that have not been linked to extraocular manifestations and highlighted that extensive systemic investigations were not required in these individuals. We propose the introduction of genetic testing early in the diagnostic pathway in children with ectopia lentis.


Assuntos
Ectopia do Cristalino , Cristalino , Síndrome de Marfan , Humanos , Criança , Pré-Escolar , Ectopia do Cristalino/genética , Ectopia do Cristalino/cirurgia , Estudos Retrospectivos , Testes Genéticos , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Síndrome de Marfan/cirurgia , Proteínas de Ligação a TGF-beta Latente/genética
7.
Elife ; 122023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36705323

RESUMO

Background: Age-related macular degeneration (AMD) is a leading cause of blindness in the industrialised world and is projected to affect >280 million people worldwide by 2040. Aiming to identify causal factors and potential therapeutic targets for this common condition, we designed and undertook a phenome-wide Mendelian randomisation (MR) study. Methods: We evaluated the effect of 4591 exposure traits on early AMD using univariable MR. Statistically significant results were explored further using: validation in an advanced AMD cohort; MR Bayesian model averaging (MR-BMA); and multivariable MR. Results: Overall, 44 traits were found to be putatively causal for early AMD in univariable analysis. Serum proteins that were found to have significant relationships with AMD included S100-A5 (odds ratio [OR] = 1.07, p-value = 6.80E-06), cathepsin F (OR = 1.10, p-value = 7.16E-05), and serine palmitoyltransferase 2 (OR = 0.86, p-value = 1.00E-03). Univariable MR analysis also supported roles for complement and immune cell traits. Although numerous lipid traits were found to be significantly related to AMD, MR-BMA suggested a driving causal role for serum sphingomyelin (marginal inclusion probability [MIP] = 0.76; model-averaged causal estimate [MACE] = 0.29). Conclusions: The results of this MR study support several putative causal factors for AMD and highlight avenues for future translational research. Funding: This project was funded by the Wellcome Trust (224643/Z/21/Z; 200990/Z/16/Z); the University of Manchester's Wellcome Institutional Strategic Support Fund (Wellcome ISSF) grant (204796/Z/16/Z); the UK National Institute for Health Research (NIHR) Academic Clinical Fellow and Clinical Lecturer Programmes; Retina UK and Fight for Sight (GR586); the Australian National Health and Medical Research Council (NHMRC) (1150144).


Assuntos
Degeneração Macular , Humanos , Fatores de Risco , Teorema de Bayes , Austrália , Degeneração Macular/genética , Causalidade , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
8.
J Med Genet ; 60(8): 810-818, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36669873

RESUMO

BACKGROUND: Genomic variant prioritisation is one of the most significant bottlenecks to mainstream genomic testing in healthcare. Tools to improve precision while ensuring high recall are critical to successful mainstream clinical genomic testing, in particular for whole genome sequencing where millions of variants must be considered for each patient. METHODS: We developed EyeG2P, a publicly available database and web application using the Ensembl Variant Effect Predictor. EyeG2P is tailored for efficient variant prioritisation for individuals with inherited ophthalmic conditions. We assessed the sensitivity of EyeG2P in 1234 individuals with a broad range of eye conditions who had previously received a confirmed molecular diagnosis through routine genomic diagnostic approaches. For a prospective cohort of 83 individuals, we assessed the precision of EyeG2P in comparison with routine diagnostic approaches. For 10 additional individuals, we assessed the utility of EyeG2P for whole genome analysis. RESULTS: EyeG2P had 99.5% sensitivity for genomic variants previously identified as clinically relevant through routine diagnostic analysis (n=1234 individuals). Prospectively, EyeG2P enabled a significant increase in precision (35% on average) in comparison with routine testing strategies (p<0.001). We demonstrate that incorporation of EyeG2P into whole genome sequencing analysis strategies can reduce the number of variants for analysis to six variants, on average, while maintaining high diagnostic yield. CONCLUSION: Automated filtering of genomic variants through EyeG2P can increase the efficiency of diagnostic testing for individuals with a broad range of inherited ophthalmic disorders.


Assuntos
Bases de Dados Genéticas , Oftalmopatias , Testes Genéticos , Genoma Humano , Genômica , Oftalmopatias/genética , Humanos , Variação Genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-38550939

RESUMO

Genetics has been an important tool for discovering new aspects of biology across life. In humans, there is growing momentum behind the application of this knowledge to drive innovation in clinical care, most notably through developments in precision medicine. Nowhere has the impact of genetics on clinical practice been more striking than in the field of rare disorders. For most of these conditions, individual disease susceptibility is influenced by DNA sequence variation in a single or a small number of genes. In contrast, most common disorders are multifactorial and are caused by a complex interplay of multiple genetic, environmental and stochastic factors. The longstanding division of human disease genetics into rare and common components has obscured the continuum of human traits and echoes aspects of the century-old debate between the Mendelian and biometric views of human genetics. In this article, we discuss the differences in data and concepts between rare and common disease genetics. Opportunities to unify these two areas are noted and the importance of adopting a holistic perspective that integrates diverse genetic and environmental factors is discussed.

10.
J Mol Diagn ; 24(12): 1232-1239, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36191840

RESUMO

Small in-frame insertion-deletion (indel) variants are a common form of genomic variation whose impact on rare disease phenotypes has been understudied. The prediction of the pathogenicity of such variants remains challenging. X-linked incomplete congenital stationary night blindness type 2 (CSNB2) is a nonprogressive, inherited retinal disorder caused by variants in CACNA1F, encoding the Cav1.4α1 channel protein. Here, structural analysis was used through homology modeling to interpret 10 disease-correlated and 10 putatively benign CACNA1F in-frame indel variants. CSNB2-correlated changes were found to be more highly conserved compared with putative benign variants. Notably, all 10 disease-correlated variants but none of the benign changes were within modeled regions of the protein. Structural analysis revealed that disease-correlated variants are predicted to destabilize the structure and function of the Cav1.4α1 channel protein. Overall, the use of structural information to interpret the consequences of in-frame indel variants provides an important adjunct that can improve the diagnosis for individuals with CSNB2.


Assuntos
Oftalmopatias Hereditárias , Cegueira Noturna , Humanos , Virulência , Canais de Cálcio Tipo L/genética , Cegueira Noturna/genética , Cegueira Noturna/metabolismo , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/metabolismo , Mutação
11.
Stem Cell Res ; 64: 102880, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35933957

RESUMO

TYR encodes tyrosinase, the enzyme catalysing the first steps of melanin biosynthesis in melanocytes and retinal pigment epithelia (RPE). The TYR c.575C>A (p.Ser192Tyr) [rs1042602] and c.1205G>A (p.Arg402Gln) [rs1126809] variants are prevalent genetic changes that have been associated with multiple pigmentation traits. Notably, individuals who are homozygous for these two missense variants are predisposed to having albinism. Here we used CRISPR-Cas9 technology to generate an induced pluripotent stem cell (iPSC) line (WTSIi253-A-2) that carries both c.575C>A and c.1205G>A in homozygous state. The line expresses pluripotency markers and exhibits multi-lineage differentiation potential, providing a useful in vitro model for investigating albinism pathogenesis.


Assuntos
Albinismo , Células-Tronco Pluripotentes Induzidas , Humanos , Edição de Genes , Células-Tronco Pluripotentes Induzidas/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Sistemas CRISPR-Cas/genética , Melaninas/genética , Melaninas/metabolismo , Albinismo/genética , Pigmentos da Retina
12.
Nat Commun ; 13(1): 3939, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803923

RESUMO

Genetic diseases have been historically segregated into rare Mendelian disorders and common complex conditions. Large-scale studies using genome sequencing are eroding this distinction and are gradually unmasking the underlying complexity of human traits. Here, we analysed data from the Genomics England 100,000 Genomes Project and from a cohort of 1313 individuals with albinism aiming to gain insights into the genetic architecture of this archetypal rare disorder. We investigated the contribution of protein-coding and regulatory variants both rare and common. We focused on TYR, the gene encoding tyrosinase, and found that a high-frequency promoter variant, TYR c.-301C>T [rs4547091], modulates the penetrance of a prevalent, albinism-associated missense change, TYR c.1205G>A (p.Arg402Gln) [rs1126809]. We also found that homozygosity for a haplotype formed by three common, functionally-relevant variants, TYR c.[-301C;575C>A;1205G>A], is associated with a high probability of receiving an albinism diagnosis (OR>82). This genotype is also associated with reduced visual acuity and with increased central retinal thickness in UK Biobank participants. Finally, we report how the combined analysis of rare and common variants can increase diagnostic yield and can help inform genetic counselling in families with albinism.


Assuntos
Albinismo Oculocutâneo , Albinismo , Albinismo/genética , Albinismo Oculocutâneo/genética , Genótipo , Humanos , Monofenol Mono-Oxigenase/genética , Proteínas Mutantes/genética , Linhagem , Fenótipo
13.
Acta Ophthalmol ; 100(6): e1332-e1339, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35633130

RESUMO

PURPOSE: Congenital stationary night blindness (CSNB) is a heterogeneous group of Mendelian retinal disorders that present in childhood. Biallelic variants altering the protein-coding region of the TRPM1 gene are one of the commonest causes of CSNB. Here, we report the clinical and genetic findings in 10 unrelated individuals with TRPM1-retinopathy. METHODS: Study subjects were recruited through a tertiary clinical ophthalmic genetic service at Manchester, UK. All participants underwent visual electrodiagnostic testing and panel-based genetic analysis. RESULTS: Study subjects had a median age of 8 years (range: 3-20 years). All probands were myopic and had electroretinographic findings in keeping with complete CSNB. Notably, three probands reported no night vision problems. Fourteen different disease-associated TRPM1 variants were detected. One individual was homozygous for the NM_001252024.2 (TRPM1):c.965 + 29G>A variant and a mini-gene assay highlighted that this change results in mis-splicing and premature protein termination. Additionally, two unrelated probands who had CSNB and mild neurodevelopmental abnormalities were found to carry a 15q13.3 microdeletion. This copy number variant encompasses seven genes, including TRPM1, and was encountered in the heterozygous state and in trans with a missense TRPM1 variant in each case. CONCLUSION: Our findings highlight the importance of comprehensive genomic analysis, beyond the exons and protein-coding regions of genes, for individuals with CSNB. When this characteristic retinal phenotype is accompanied by extraocular findings (including learning and/or behavioural difficulties), a 15q13.3 microdeletion should be suspected. Focused analysis (e.g. microarray testing) is recommended to look for large-scale deletions encompassing TRPM1 in patients with CSNB and neurodevelopmental abnormalities.


Assuntos
Oftalmopatias Hereditárias , Doenças Genéticas Ligadas ao Cromossomo X , Cegueira Noturna , Canais de Cátion TRPM , Deleção Cromossômica , Transtornos Cromossômicos , Cromossomos Humanos Par 15 , Eletrorretinografia , Oftalmopatias Hereditárias/diagnóstico , Oftalmopatias Hereditárias/genética , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Deficiência Intelectual , Mutação , Miopia , Cegueira Noturna/congênito , Cegueira Noturna/diagnóstico , Cegueira Noturna/genética , Linhagem , Convulsões , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(20): e2118510119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35561216

RESUMO

Age-related macular degeneration (AMD) is a leading cause of visual loss. It has a strong genetic basis, and common haplotypes on chromosome (Chr) 1 (CFH Y402H variant) and on Chr10 (near HTRA1/ARMS2) contribute the most risk. Little is known about the early molecular and cellular processes in AMD, and we hypothesized that analyzing submacular tissue from older donors with genetic risk but without clinical features of AMD would provide biological insights. Therefore, we used mass spectrometry­based quantitative proteomics to compare the proteins in human submacular stromal tissue punches from donors who were homozygous for high-risk alleles at either Chr1 or Chr10 with those from donors who had protective haplotypes at these loci, all without clinical features of AMD. Additional comparisons were made with tissue from donors who were homozygous for high-risk Chr1 alleles and had early AMD. The Chr1 and Chr10 risk groups shared common changes compared with the low-risk group, particularly increased levels of mast cell­specific proteases, including tryptase, chymase, and carboxypeptidase A3. Histological analyses of submacular tissue from donors with genetic risk of AMD but without clinical features of AMD and from donors with Chr1 risk and AMD demonstrated increased mast cells, particularly the tryptase-positive/chymase-negative cells variety, along with increased levels of denatured collagen compared with tissue from low­genetic risk donors. We conclude that increased mast cell infiltration of the inner choroid, degranulation, and subsequent extracellular matrix remodeling are early events in AMD pathogenesis and represent a unifying mechanistic link between Chr1- and Chr10-mediated AMD.


Assuntos
Cromossomos Humanos Par 10 , Cromossomos Humanos Par 1 , Degeneração Macular , Mastócitos , Peptídeo Hidrolases , Alelos , Corioide/enzimologia , Corioide/patologia , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 10/genética , Humanos , Degeneração Macular/genética , Degeneração Macular/patologia , Mastócitos/patologia , Peptídeo Hidrolases/genética , Proteômica , Risco , Triptases/metabolismo
15.
J Med Genet ; 59(4): 385-392, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33766936

RESUMO

BACKGROUND: Improving the clinical interpretation of missense variants can increase the diagnostic yield of genomic testing and lead to personalised management strategies. Currently, due to the imprecision of bioinformatic tools that aim to predict variant pathogenicity, their role in clinical guidelines remains limited. There is a clear need for more accurate prediction algorithms and this study aims to improve performance by harnessing structural biology insights. The focus of this work is missense variants in a subset of genes associated with X linked disorders. METHODS: We have developed a protein-specific variant interpreter (ProSper) that combines genetic and protein structural data. This algorithm predicts missense variant pathogenicity by applying machine learning approaches to the sequence and structural characteristics of variants. RESULTS: ProSper outperformed seven previously described tools, including meta-predictors, in correctly evaluating whether or not variants are pathogenic; this was the case for 11 of the 21 genes associated with X linked disorders that met the inclusion criteria for this study. We also determined gene-specific pathogenicity thresholds that improved the performance of VEST4, REVEL and ClinPred, the three best-performing tools out of the seven that were evaluated; this was the case in 11, 11 and 12 different genes, respectively. CONCLUSION: ProSper can form the basis of a molecule-specific prediction tool that can be implemented into diagnostic strategies. It can allow the accurate prioritisation of missense variants associated with X linked disorders, aiding precise and timely diagnosis. In addition, we demonstrate that gene-specific pathogenicity thresholds for a range of missense prioritisation tools can lead to an increase in prediction accuracy.


Assuntos
Genes Ligados ao Cromossomo X , Mutação de Sentido Incorreto , Algoritmos , Biologia Computacional , Humanos , Mutação de Sentido Incorreto/genética
17.
Am J Hum Genet ; 108(8): 1385-1400, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34260948

RESUMO

Age-related macular degeneration (AMD) is a leading cause of vision loss; there is strong genetic susceptibility at the complement factor H (CFH) locus. This locus encodes a series of complement regulators: factor H (FH), a splice variant factor-H-like 1 (FHL-1), and five factor-H-related proteins (FHR-1 to FHR-5), all involved in the regulation of complement factor C3b turnover. Little is known about how AMD-associated variants at this locus might influence FHL-1 and FHR protein concentrations. We have used a bespoke targeted mass-spectrometry assay to measure the circulating concentrations of all seven complement regulators and demonstrated elevated concentrations in 352 advanced AMD-affected individuals for all FHR proteins (FHR-1, p = 2.4 × 10-10; FHR-2, p = 6.0 × 10-10; FHR-3, p = 1.5 × 10-5; FHR-4, p = 1.3 × 10-3; FHR-5, p = 1.9 × 10-4) and FHL-1 (p = 4.9 × 10-4) when these individuals were compared to 252 controls, whereas no difference was seen for FH (p = 0.94). Genome-wide association analyses in controls revealed genome-wide-significant signals at the CFH locus for all five FHR proteins, and univariate Mendelian-randomization analyses strongly supported the association of FHR-1, FHR-2, FHR-4, and FHR-5 with AMD susceptibility. These findings provide a strong biochemical explanation for how genetically driven alterations in circulating FHR proteins could be major drivers of AMD and highlight the need for research into FHR protein modulation as a viable therapeutic avenue for AMD.


Assuntos
Proteínas Inativadoras do Complemento C3b/metabolismo , Fator H do Complemento/genética , Predisposição Genética para Doença , Degeneração Macular/sangue , Polimorfismo de Nucleotídeo Único , Idoso , Estudos de Casos e Controles , Proteínas Inativadoras do Complemento C3b/genética , Feminino , Humanos , Degeneração Macular/genética , Degeneração Macular/patologia , Masculino , Fatores de Risco
18.
Invest Ophthalmol Vis Sci ; 62(7): 16, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34125159

RESUMO

Purpose: North Carolina macular dystrophy (NCMD) is an autosomal dominant, congenital disorder affecting the central retina. Here, we report clinical and genetic findings in three families segregating NCMD and use epigenomic datasets from human tissues to gain insights into the effect of NCMD-implicated variants. Methods: Clinical assessment and genetic testing were performed. Publicly available transcriptomic and epigenomic datasets were analyzed and the activity-by-contact method for scoring enhancer elements and linking them to target genes was used. Results: A previously described, heterozygous, noncoding variant upstream of the PRDM13 gene was detected in all six affected study participants (chr6:100,040,987G>C [GRCh37/hg19]). Interfamilial and intrafamilial variability were observed; the visual acuity ranged from 0.0 to 1.6 LogMAR and fundoscopic findings ranged from visually insignificant, confluent, drusen-like macular deposits to coloboma-like macular lesions. Variable degrees of peripheral retinal spots (which were easily detected on widefield retinal imaging) were observed in all study subjects. Notably, a 6-year-old patient developed choroidal neovascularization and required treatment with intravitreal bevacizumab injections. Computational analysis of the five single nucleotide variants that have been implicated in NCMD revealed that these noncoding changes lie within two putative enhancer elements; these elements are predicted to interact with PRDM13 in the developing human retina. PRDM13 was found to be expressed in the fetal retina, with greatest expression in the amacrine precursor cell population. Conclusions: We provide further evidence supporting the role of PRDM13 dysregulation in the pathogenesis of NCMD and highlight the usefulness of widefield retinal imaging in individuals suspected to have this condition.


Assuntos
Distrofias Hereditárias da Córnea , Histona-Lisina N-Metiltransferase/genética , Retina , Fatores de Transcrição/genética , Adolescente , Pré-Escolar , Distrofias Hereditárias da Córnea/diagnóstico , Distrofias Hereditárias da Córnea/genética , Distrofias Hereditárias da Córnea/fisiopatologia , Epigenômica/métodos , Proteínas do Olho/metabolismo , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Oftalmoscopia/métodos , Linhagem , Retina/diagnóstico por imagem , Retina/metabolismo , Avaliação de Sintomas/métodos , Tomografia de Coerência Óptica/métodos , Acuidade Visual
20.
J Med Genet ; 58(8): 570-578, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817297

RESUMO

BACKGROUND: Inherited retinal disorders are a clinically and genetically heterogeneous group of conditions and a major cause of visual impairment. Common disease subtypes include vitelliform macular dystrophy (VMD) and retinitis pigmentosa (RP). Despite the identification of over 90 genes associated with RP, conventional genetic testing fails to detect a molecular diagnosis in about one third of patients with RP. METHODS: Exome sequencing was carried out for identifying the disease-causing gene in a family with autosomal dominant RP. Gene panel testing and exome sequencing were performed in 596 RP and VMD families to identified additional IMPG1 variants. In vivo analysis in the medaka fish system by knockdown assays was performed to screen IMPG1 possible pathogenic role. RESULTS: Exome sequencing of a family with RP revealed a splice variant in IMPG1. Subsequently, the same variant was identified in individuals from two families with either RP or VMD. A retrospective study of patients with RP or VMD revealed eight additional families with different missense or nonsense variants in IMPG1. In addition, the clinical diagnosis of the IMPG1 retinopathy-associated variant, originally described as benign concentric annular macular dystrophy, was also revised to RP with early macular involvement. Using morpholino-mediated ablation of Impg1 and its paralog Impg2 in medaka fish, we confirmed a phenotype consistent with that observed in the families, including a decreased length of rod and cone photoreceptor outer segments. CONCLUSION: This study discusses a previously unreported association between monoallelic or biallelic IMPG1 variants and RP. Notably, similar observations have been reported for IMPG2.


Assuntos
Proteínas da Matriz Extracelular , Proteínas do Olho , Genes Recessivos , Predisposição Genética para Doença , Mutação , Proteoglicanas , Retinose Pigmentar , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Exoma/genética , Sequenciamento do Exoma/métodos , Proteínas da Matriz Extracelular/genética , Proteínas do Olho/genética , Genes Recessivos/genética , Predisposição Genética para Doença/genética , Padrões de Herança/genética , Degeneração Macular/genética , Mutação/genética , Linhagem , Fenótipo , Proteoglicanas/genética , Retina/patologia , Retinose Pigmentar/genética , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA