Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 195(8): 1727-34, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23396908

RESUMO

Chlorosomes are large light-harvesting complexes found in three phyla of anoxygenic photosynthetic bacteria. Chlorosomes are primarily composed of self-assembling pigment aggregates. In addition to the main pigment, bacteriochlorophyll c, d, or e, chlorosomes also contain variable amounts of carotenoids. Here, we use X-ray scattering and electron cryomicroscopy, complemented with absorption spectroscopy and pigment analysis, to compare the morphologies, structures, and pigment compositions of chlorosomes from Chloroflexus aurantiacus grown under two different light conditions and Chlorobaculum tepidum. High-purity chlorosomes from C. aurantiacus contain about 20% more carotenoid per bacteriochlorophyll c molecule when grown under low light than when grown under high light. This accentuates the light-harvesting function of carotenoids, in addition to their photoprotective role. The low-light chlorosomes are thicker due to the overall greater content of pigments and contain domains of lamellar aggregates. Experiments where carotenoids were selectively extracted from intact chlorosomes using hexane proved that they are located in the interlamellar space, as observed previously for species belonging to the phylum Chlorobi. A fraction of the carotenoids are localized in the baseplate, where they are bound differently and cannot be removed by hexane. In C. tepidum, carotenoids cannot be extracted by hexane even from the chlorosome interior. The chemical structure of the pigments in C. tepidum may lead to π-π interactions between carotenoids and bacteriochlorophylls, preventing carotenoid extraction. The results provide information about the nature of interactions between bacteriochlorophylls and carotenoids in the protein-free environment of the chlorosome interior.


Assuntos
Carotenoides/química , Chloroflexus/metabolismo , Luz , Ficobiliproteínas/química , Ficobiliproteínas/fisiologia , Cromatóforos Bacterianos , Carotenoides/metabolismo , Chloroflexus/citologia , Estrutura Molecular , Organelas/fisiologia , Pigmentos Biológicos , Difração de Raios X
2.
Photosynth Res ; 104(2-3): 211-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20306134

RESUMO

Chlorosomes from green photosynthetic bacteria are large photosynthetic antennae containing self-assembling aggregates of bacteriochlorophyll c, d, or e. The pigments within chlorosomes are organized in curved lamellar structures. Aggregates with similar optical properties can be prepared in vitro, both in polar as well as non-polar solvents. In order to gain insight into their structure we examined hexane-induced aggregates of purified bacteriochlorophyll c by X-ray scattering. The bacteriochlorophyll c aggregates exhibit scattering features that are virtually identical to those of native chlorosomes demonstrating that the self-assembly of these pigments is fully encoded in their chemical structure. Thus, the hexane-induced aggregates constitute an excellent model to study the effects of chemical structure on assembly. Using bacteriochlorophyllides transesterified with different alcohols we have established a linear relationship between the esterifying alcohol length and the lamellar spacing. The results provide a structural basis for lamellar spacing variability observed for native chlorosomes from different species. A plausible physiological role of this variability is discussed. The X-ray scattering also confirmed the assignments of peaks, which arise from the crystalline baseplate in the native chlorosomes.


Assuntos
Álcoois/química , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Estruturas Celulares/metabolismo , Chlorobium/metabolismo , Anisotropia , Esterificação , Hexanos/química , Estrutura Quaternária de Proteína , Espalhamento de Radiação , Raios X
3.
J Bacteriol ; 191(21): 6701-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19717605

RESUMO

The green filamentous bacterium Chloroflexus aurantiacus employs chlorosomes as photosynthetic antennae. Chlorosomes contain bacteriochlorophyll aggregates and are attached to the inner side of a plasma membrane via a protein baseplate. The structure of chlorosomes from C. aurantiacus was investigated by using a combination of cryo-electron microscopy and X-ray diffraction and compared with that of Chlorobi species. Cryo-electron tomography revealed thin chlorosomes for which a distinct crystalline baseplate lattice was visualized in high-resolution projections. The baseplate is present only on one side of the chlorosome, and the lattice dimensions suggest that a dimer of the CsmA protein is the building block. The bacteriochlorophyll aggregates inside the chlorosome are arranged in lamellae, but the spacing is much greater than that in Chlorobi species. A comparison of chlorosomes from different species suggested that the lamellar spacing is proportional to the chain length of the esterifying alcohols. C. aurantiacus chlorosomes accumulate larger quantities of carotenoids under high-light conditions, presumably to provide photoprotection. The wider lamellae allow accommodation of the additional carotenoids and lead to increased disorder within the lamellae.


Assuntos
Chloroflexus/metabolismo , Complexos de Proteínas Captadores de Luz/fisiologia , Organelas/fisiologia , Cromatóforos Bacterianos , Bacterioclorofilas/fisiologia , Membrana Celular , Membranas Intracelulares , Organelas/ultraestrutura , Difração de Raios X
4.
Langmuir ; 24(5): 2035-41, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-18197717

RESUMO

Chlorosomes are light-harvesting complexes of green photosynthetic bacteria. Chlorosomes contain bacteriochlorophyll (BChl) c, d, or e aggregates that exhibit strong excitonic coupling. The short-range order, which is responsible for the coupling, has been proposed to be augmented by pigment arrangement into undulated lamellar structures with spacing between 2 and 3 nm. Treatment of chlorosomes with hexanol reversibly converts the aggregated chlorosome chlorophylls into a form with spectral properties very similar to that of the monomer. Although this transition has been extensively studied, the structural basis remains unclear due to variability in the obtained morphologies. Here we investigated hexanol-induced structural changes in the lamellar organization of BChl c in chlorosomes from Chlorobium tepidum by a combination of X-ray scattering, electron cryomicroscopy, and optical spectroscopy. At a low hexanol/pigment ratio, the lamellae persisted in the presence of hexanol while the short-range order and exciton interactions between chlorin rings were effectively eliminated, producing a monomer-like absorption. The result suggested that hexanol hydroxyls solvated the chlorin rings while the aliphatic tail partitioned into the hydrophobic part of the lamellar structure. This partitioning extended the chlorosome along its long axis. Further increase of the hexanol/pigment ratio produced round pigment-hexanol droplets, which lost all lamellar order. After hexanol removal the spectral properties were restored. In the samples treated under the high hexanol/pigment ratio, lamellae reassembled in small domains after hexanol removal while the shape and long-range order were irreversibly lost. Thus, all the interactions required for establishing the short-range order by self-assembly are provided by BChl c molecules alone. However, the long-range order and overall shape are imposed by an external structure, e.g., the proteinaceous chlorosome baseplate.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Bacterioclorofilas/química , Chlorobium/química , Hexanóis/química , Substâncias Macromoleculares/química , Transição de Fase , Análise Espectral
5.
Biophys J ; 91(4): 1433-40, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16731553

RESUMO

Chlorosomes are the main light harvesting complexes of green photosynthetic bacteria. Recently, a lamellar model was proposed for the arrangement of pigment aggregates in Chlorobium tepidum chlorosomes, which contain bacteriochlorophyll (BChl) c as the main pigment. Here we demonstrate that the lamellar organization is also found in chlorosomes from two brown-colored species (Chl. phaeovibrioides and Chl. phaeobacteroides) containing BChl e as the main pigment. This suggests that the lamellar model is universal among green sulfur bacteria. In contrast to green-colored Chl. tepidum, chlorosomes from the brown-colored species often contain domains of lamellar aggregates that may help them to survive in extremely low light conditions. We suggest that carotenoids are localized between the lamellar planes and drive lamellar assembly by augmenting hydrophobic interactions. A model for chlorosome assembly, which accounts for the role of carotenoids and secondary BChl homologs, is presented.


Assuntos
Bacterioclorofilas/química , Carotenoides/química , Chlorobium/química , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/ultraestrutura , Modelos Químicos , Bacterioclorofilas/metabolismo , Carotenoides/metabolismo , Chlorobium/metabolismo , Chlorobium/ultraestrutura , Simulação por Computador , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Biológicos , Organelas/química , Organelas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA