Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38540850

RESUMO

The antimicrobial activity of Origanum vulgare var. hirtum (O) and Coridothymus capitatus (C) essential oils (EOs) and hydrolates (HYs) of the same botanical species was evaluated on sixteen L. monocytogenes strains from food and clinical origins. The antimicrobial activity was assessed by Minimum Inhibitory Concentration (MIC) determination, viable cell enumeration over time up to 60 min, and evaluation of the cellular damage through Confocal Laser Scanning Microscope (CLSM) analysis. EOs exhibited antimicrobial activity with MIC values ranging from 0.3125 to 10 µL/mL. In contrast, HYs demonstrated antimicrobial effectiveness at higher concentrations (125-500 µL/mL). The effect of HYs was rapid after the contact with the cells, and the cell count reduction over 60 min of HY treatment was about 1.2-1.7 Log CFU/mL. L. monocytogenes cells were stressed by HY treatment, and red cell aggregates were revealed through CLSM observation. Moreover, the combinations of EOs and HYs had an additive antilisterial effect in most cases and allowed the concentration of use to be reduced, while maintaining or improving the antimicrobial effectiveness. The combined use of EOs and HYs can offer novel opportunities for applications, thereby enhancing the antimicrobial effectiveness and diminishing the concentration of use. This provides the added benefit of reducing toxicity and mitigating any undesirable sensory effects.

2.
Ital J Food Saf ; 12(1): 11048, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37064519

RESUMO

Biofilms represent an evolutionary form of life, which translates from life in free-living cells to a community lifestyle. In natural habitats, biofilms are a multispecies complex, where synergies or antagonisms can be established. For example, Listeria monocytogenes and Pseudomonas fluorescens are associated with a dual-species biofilm that is widespread in dairy plants. In food plants, multiple strategies are devised to control biofilms, including natural compounds such as essential oils (EOs). In this respect, this study evaluated the effectiveness of Thymbra capitata (L.) Cav. (TEO) and Cinnamomum zeylanicum (CEO) against a dual-species biofilm of L. monocytogenes and P. fluorescens, mimicking dairy process conditions. Based on Minimum Inhibitory Concentrations results, the EOs concentration (10 µL/mL) was chosen for the antibiofilm assay at 12°C on polystyrene (PS), and stainless-steel surfaces for 168 h, using a Ricotta-based model system as culture medium. Biofilm biomass was assessed by crystal violet staining, and the planktonic and sessile cells were quantified in terms of Log CFU/cm2. Results showed that CEO displayed the greatest antibiofilm activity, reducing significantly (P<0.05) P. fluorescens and L. monocytogenes sessile cells of about 2.5 and 2.8 Log CFU/cm2 after 72 h, respectively. However, L. monocytogenes gained the protection of P. fluorescens, evading CEO treatment and showing a minimal sessile cell reduction of 0.7 Log CFU/cm2 after 72 h. Considering the outcome of this study, CEO might have promising perspectives for applications in dairy facilities.

3.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771045

RESUMO

In this study, for the first time, the chemical composition of Echinacea purpurea (L.) Moench. and propolis (EAP) hydroalcoholic solution from the Trentino Alto Adige region of northern Italy was investigated by using SPME-GC-MS to describe the volatile content and GC-MS after silylation to detect the non-volatile compounds in the extractable organic matter. The antimicrobial activity of EAP hydroalcoholic solution was evaluated by Minimum Inhibitory Concentration (MIC) determination on 13 type strains, food and clinical isolates. Time Kill Kinetics (TKK) assays and the determination on swimming and swarming motility for 48 h gave more details on the mode of action of EAP solution. The results highlighted the presence of some terpenes and a large number of compounds belonging to different chemical classes. Among these, sugars and organic acids excelled. The EAP hydroalcoholic solution exhibited a strong antimicrobial activity in terms of MIC, with a clear decrease in the cellular load after 48 h. However, the bacterial motility may not be affected by the EAP treatment, displaying a dynamic swarming and swimming motility capacity over time. Given the complexity of chemical profile and the strong antimicrobial effectiveness, the EAP hydroalcoholic solution can be considered a source of bioactive molecules, deserving further investigation for the versatility of application.


Assuntos
Anti-Infecciosos , Echinacea , Própole , Própole/farmacologia , Própole/química , Echinacea/química , Anti-Infecciosos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Itália
4.
Crit Rev Microbiol ; 49(1): 117-149, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35313120

RESUMO

Most human infectious diseases are caused by microorganisms growing as biofilms. These three-dimensional self-organized communities are embedded in a dense matrix allowing microorganisms to persistently inhabit abiotic and biotic surfaces due to increased resistance to both antibiotics and effectors of the immune system. Consequently, there is an urgent need for novel strategies to control biofilm-associated infections. Natural products offer a vast array of chemical structures and possess a wide variety of biological properties; therefore, they have been and continue to be exploited in the search for potential biofilm inhibitors with a specific or multi-locus mechanism of action. This review provides an updated discussion of the major bioactive compounds isolated from several natural sources - such as plants, lichens, algae, microorganisms, animals, and humans - with the potential to inhibit biofilm formation and/or to disperse established biofilms by bacterial pathogens. Despite the very large number of bioactive products, their exact mechanism of action often remains to be clarified and, in some cases, the identity of the active molecule is still unknown. This knowledge gap should be filled thus allowing development of these products not only as novel drugs to combat bacterial biofilms, but also as antibiotic adjuvants to restore the therapeutic efficacy of current antibiotics.


Assuntos
Bactérias , Produtos Biológicos , Animais , Humanos , Biofilmes , Antibacterianos/química , Produtos Biológicos/farmacologia
5.
Foods ; 11(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36140944

RESUMO

The SARS-CoV-2 pandemic is being questioned for its possible food transmission, due to several reports of the virus on food, outbreaks developed in food companies, as well as its origins linked to the wet market of Wuhan, China. The purpose of this review is to analyze the scientific evidence gathered so far on the relationship between food and the pandemic, considering all aspects of the food system that can be involved. The collected data indicate that there is no evidence that foods represent a risk for the transmission of SARS-CoV-2. In fact, even if the virus can persist on food surfaces, there are currently no proven cases of infection from food. Moreover, the pandemic showed to have deeply influenced the eating habits of consumers and their purchasing methods, but also to have enhanced food waste and poverty. Another important finding is the role of meat processing plants as suitable environments for the onset of outbreaks. Lessons learned from the pandemic include the correct management of spaces, food hygiene education for both food workers and common people, the enhancement of alternative commercial channels, the reorganization of food activities, in particular wet markets, and intensive farming, following correct hygiene practices. All these outcomes lead to another crucial lesson, which is the importance of the resilience of the food system. These lessons should be assimilated to deal with the present pandemic and possible future emergencies. Future research directions include further investigation of the factors linked to the food system that can favor the emergence of viruses, and of innovative technologies that can reduce viral transmission.

6.
Compr Rev Food Sci Food Saf ; 21(5): 4210-4250, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35876396

RESUMO

Sheep meat is consumed and appreciated all over the world for its nutritional value and flavor. However, this meat is very perishable and easily subjected to the action of both spoilage and pathogenic microorganisms. For this reason, in combination with cold storage, effective preservation techniques are required. There is increasing interest in the application of natural antimicrobials, such as essential oils, extracts, spices, and by-products of the food industry. This review analyses the studies on natural antimicrobials in sheep meat and sheep meat products and gathers evidence about the encouraging results achieved on the reduction and/or elimination of spoilage and pathogenic microorganisms. The use of these natural antimicrobial alternatives might open up important perspectives for industrial application, considering that this specific meat is often traded over long distances. In fact, on the basis of scientific literature, natural antimicrobials can be considered a sustainable and affordable alternative to extend the shelf life of sheep meat and guarantee its safety, although many factors need to be further investigated, such as the sensory impact, potential toxicity, and economic aspects. For all these issues, investigated in some of the studies reviewed here, it is fundamental to obtain the antimicrobial effect with the minimum amount of effective substance to avoid sensory modifications, toxic effects, and unbearable costs. This study sets foundations for the possible direction of future studies, which will contribute to identify effective solutions for industrial applications of natural antimicrobials in the sheep meat industry.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Animais , Antibacterianos , Anti-Infecciosos/farmacologia , Conservação de Alimentos/métodos , Carne/análise , Óleos Voláteis/farmacologia , Extratos Vegetais , Ovinos
7.
Antioxidants (Basel) ; 11(5)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35624691

RESUMO

The objective of this study is to evaluate the effects of including linseed (L) or linseed plus vitamin E (LE) in the diet of Marchigiana young bulls on the oxidative stability, color measurements, microbiological profile and fatty acid composition (FA) of burgers treated with and without a blend of essential oils (Rosmarinus officinalis and Origanum vulgare var. hirtum) (EOs). For this aim, the burgers were analysed for pH, thiobarbituric-acid-reactive substance (TBARS) content, Ferric Reducing/Antioxidant Power Assay (FRAP), vitamin E and colour measurements (L, a*, b) at 3, 6, 9, 12 days of storage: the TBARs were the highest in group L compared to C and LE after 12 days of storage (0.98, 0.73, and 0.63 mg MDA/kg, respectively). The TBARS content was also influenced by the use of EO compared to burgers not treated with EO (p < 0.05). The vitamin E content was influenced by the diet (p < 0.01), but not by the EO. The meat of the L group showed the lowest value of redness (a*) compared to C and LE (p < 0.01), while the use of EO did not affect colour parameters. The microbiological profile of the burgers showed a lower Pseudomonas count for L and LE at T0 (2.82 ± 0.30 and 2.30 ± 0.52 Log CFU/g, respectively) compared to C (3.90 ± 0.38 Log CFU/g), while the EO did not influence the microbiological profile. The FA composition was analysed at 0 and 12 days. The burgers from the LE group showed the highest value of polyunsaturated FA compared to the L and C groups (p < 0.05). Our findings suggest that the inclusion of vitamin E in a concentrate rich in polyunsaturated fatty acids is useful to limit intramuscular fat oxidation and to preserve the colour stability of burgers from young Marchigiana bulls enriched with healthy fatty acids. Moreover, linseed and vitamin E had a positive effect on microbial loads and growth dynamics, containing microbial development through time.

8.
Microorganisms ; 10(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35630364

RESUMO

The increased resistance of bacteria to antimicrobials, as well as the growing interest in innovative and sustainable alternatives to traditional food additives, are driving research towards the use of natural food preservatives. Among these, hydrolates (HYs) have gained attention as "mild" alternatives to conventional antimicrobial compounds. In this study, the response of L. monocytogenes ATCC 7644 exposed to increasing concentrations of Coridothymus capitatus HY (CHY) for 1 h at 37 °C was evaluated by means of Phenotype Microarray, modelling the kinetic data obtained by inoculating control and treated cells into GEN III microplates, after CHY removal. The results revealed differences concerning the growth dynamics in environmental conditions commonly encountered in food processing environments (different carbon sources, pH 6.0, pH 5.0, 1-8% NaCl). More specifically, for treated cells, the lag phase was extended, the growth rate was slowed down and, in most cases, the maximum concentration was diminished, suggesting the persistence of stress even after CHY removal. Confocal Laser Scanner Microscopy evidenced a diffuse aggregation and suffering of the treated cells, as a response to the stress encountered. In conclusion, the treatment with HY caused a stressing effect that persisted after its removal. The results suggest the potential of CHY application to control L. monocytogenes in food environments.

9.
Food Microbiol ; 104: 103990, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35287813

RESUMO

In this work, we determined the degree of filamentous fungi contamination in cocoa fermented seeds and the fungal potential to produce enzymes that could contribute to the cocoa quality. Internal transcribed spacer amplicon sequencing (ITS) showed 11 different species with Byssochlamys spectabilis, Aspergillus niger, Aspergillus flavus, Aspergillus carbonarius, Circinella muscae and Penicillium citrinum as the most abundant species. Our results evidenced intra and inter-species differences in the enzymes production. Cellulases, ß-glucosidase, ornithine decarboxylase and phenylalanine decarboxylase were the most diffused enzymes expressed in the 53 strains here studied. Moreover, A. niger (6/12), A. carbonarius (2/3), and P. citrinum (3/3) showed high pectinolytic activity. Remarkable was the amino decarboxylase activity of P. citrinum, and A. flavus strains. For the first time we reported the presence of B. spectabilis in cocoa fermented beans, which could play an important role in the biogenic amines formation. In addition, we explored the capability of the Aspergillus section Nigri strains, to produce ochratoxin A (OTA) in a cacao model system (CPMS) and in malt extract medium (MEL). We observed that CPMS, but not MEL, stimulated the OTA production in 6 out 15 strains of Aspergillus section Nigri, reaching values ranging between 1.70 and 4995 µg OTA kg-1 dry mycelium.


Assuntos
Cacau , Ocratoxinas , Aspergillus niger , Cacau/microbiologia , Contaminação de Alimentos/análise , Ocratoxinas/análise
10.
Nat Prod Res ; 36(3): 837-842, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32713208

RESUMO

Between Modena and Bologna Apennines (Italy), several agricultural farms have recently been dedicated to the cultivation of autochthonous aromatic plants as primary cultivation or to complement other crops. In this study, the chemical composition of Thymus vulgaris L. essential oils (EOs) from this region was evaluated by means of gas-chromatographic analysis. Three different mulching techniques, in particular, soil coverage with grass, mulch with plastic film and with straw were investigated. The results highlighted that mulching techniques influenced the composition of the analysed EOs. All the EOs exerted good antimicrobial activity against clinical and food strains of the pathogen Listeria monocytogenes, with differences related to the composition. The EO obtained from plants covered with grass showed the best results, having MIC ≤ 2.5 µL/mL, and being able to inhibit also antibiotic-resistant strains, thus confirming that soil coverage with grass influences the composition and also the biological activity of Thymus vulgaris EO.


Assuntos
Óleos Voláteis , Thymus (Planta) , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/farmacologia
11.
Crit Rev Food Sci Nutr ; 62(8): 2172-2191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33249878

RESUMO

Microbial biofilms represent a constant source of contamination in the food industry, being also a real threat for human health. In fact, most of biofilm-producing bacteria are becoming resistant to sanitizers, thus arousing the interest in natural alternatives to prevent biofilm formation on foods and food-contact surfaces. In particular, studies on biofilm control by essential oils (EOs) application are increasing, being EOs characterized by unique mixtures of compounds able to impair the mechanisms of biofilm development. This review reports the anti-biofilm properties of EOs in bacterial biofilm control (inhibition, removal and prevention of biofilm dispersion) on food-contact surfaces. The relationship between EOs effect and composition, concentration, involved bacteria, and surfaces is discussed, and the possible sites of action are also elucidated. The findings prove the high biofilm controlling capability of EOs through the regulation of genes and proteins implicated in motility, Quorum Sensing and exopolysaccharides (EPS) matrix. Moreover, incorporation in nanosized delivery systems, formulation of blends and combination of EOs with other strategies can increase their anti-biofilm activity. This review provides an overview of the current knowledge of the EOs effectiveness in controlling bacterial biofilm on food-contact surfaces, providing valuable information for improving EOs use as sanitizers in food industries.


Assuntos
Óleos Voláteis , Antibacterianos/farmacologia , Bactérias , Biofilmes , Humanos , Óleos Voláteis/farmacologia , Percepção de Quorum
12.
J Appl Microbiol ; 132(3): 1866-1876, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34800068

RESUMO

AIMS: This study aimed to evaluate the effectiveness of selected essential oils (EOs) and hydrolates (Hs) against Listeria monocytogenes biofilms on polystyrene (PS) and stainless steel (SS) surfaces. METHODS AND RESULTS: Among others, Origanum hirtum EO, Corydothymus capitatus EO and Citrus aurantium H were selected to treat L. monocytogenes biofilms during and after biofilm formation. Sub-minimum inhibitory concentrations (MICs) of C. capitatus EO (0.31 µl/ml) showed the highest inhibiting effect against biofilm formation on PS, while on SS no significant differences between the EOs were observed (43.7%-88.7% inhibition). Overall, the tested biosanitizers showed limited activity as biofilm removal agents. Although generally less effective, C. aurantium H exhibited good biofilm inhibition performance at 62.5 µl/ml, particularly on PS. Confocal laser scanning microscopy proved that sub-MICs of the biosanitizers drastically changed L. monocytogenes biofilm architecture, with bacterial cells elongation in the presence of C. capitatus EO. CONCLUSIONS: Our findings suggest that the tested EOs and H are able to control Listeria biofilms, particularly preventing biofilm formation on both materials. Considering its mild aroma and hydrophilicity, the H exhibited promising perspectives of application. SIGNIFICANCE AND IMPACT OF STUDY: This study raises the possibility of applying EOs and Hs to control biofilms on different surfaces in the food industry.


Assuntos
Listeria monocytogenes , Óleos Voláteis , Biofilmes , Microbiologia de Alimentos , Óleos Voláteis/farmacologia , Poliestirenos , Aço Inoxidável/análise
13.
Molecules ; 26(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34443356

RESUMO

Within the unavoidable variability of various origins in the characteristics of essential oils, the aim of this study was to evaluate the effect of the distillation time on the chemical composition and biological activity of Cannabis sativa essential oils (EOs). The dry inflorescences came from Carmagnola, Kompolti, Futura 75, Gran Sasso Kush and Carmagnola Lemon varieties from Abruzzo region (Central Italy), the last two being new cultivar here described for the first time. EOs were collected at 2 h and 4 h of distillation; GC/MS technique was applied to characterize their volatile fraction. The EOs were evaluated for total polyphenol content (TPC), antioxidant capacity (AOC) and antimicrobial activity against food-borne pathogens and spoilage bacteria. The time of distillation particularly influenced EOs chemical composition, extracting more or less terpenic components, but generally enriching with minor sesquiterpenes and cannabidiol. A logical response in ratio of time was observed for antioxidant potential, being the essential oils at 4 h of distillation more active than those distilled for 2 h, and particularly Futura 75. Conversely, except for Futura 75, the effect of time on the antimicrobial activity was variable and requires further investigations; nevertheless, the inhibitory activity of all EOs against Pseudomonas fluorescens P34 was an interesting result.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Cannabis/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Polifenóis/análise , Fatores de Tempo
14.
Int J Food Microbiol ; 356: 109353, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34411997

RESUMO

Among pathogens, L. monocytogenes has the capability to persist on Food Processing Environment (FPE), first of all posing safety issues, then economic impact on productivity. The aim of this work was to determine the influence of biofilm forming-ability and molecular features on the persistence of 19 Listeria monocytogenes isolates obtained from FPE, raw and processed products of a cold-smoked salmon processing plant. To verify the phenotypic and genomic correlations among the isolates, different analyses were employed: serotyping, Clonal Complex (CC), core genome Multi-Locus Sequence Typing (cgMLST) and Single Nucleotide Polymorphisms (SNPs) clustering, and evaluation of the presence of virulence- and persistence-associated genes. From our results, the biofilm formation was significantly higher (*P < 0.05) at 37 °C, compared to 30 and 12 °C, suggesting a temperature-dependent behaviour. Moreover, the biofilm-forming ability showed a strain-specific trend, not correlated with CC or with strains persistence. Instead, the presence of internalin (inL), Stress Survival Islet (SSI) and resistance to erythromycin (ermC) genes was correlated with the ability to produce biofilms. Our data demonstrate that the genetic profile influences the adhesion capacity and persistence of L. monocytogenes in food processing plants and could be the result of environmental adaptation in response to the external selective pressure.


Assuntos
Biofilmes , Microbiologia de Alimentos , Listeria monocytogenes , Animais , Manipulação de Alimentos , Indústria Alimentícia , Listeria monocytogenes/classificação , Listeria monocytogenes/genética , Tipagem de Sequências Multilocus , Salmão/microbiologia
15.
Foods ; 10(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467189

RESUMO

In dairy processing environments, many bacterial species adhere and form biofilms on surfaces and equipment, leading to foodborne illness and food spoilage. Among them, Listeria monocytogenes and Pseudomonas spp. could be present in mixed-species biofilms. This study aimed to evaluate the interactions between L. monocytogenes and P. fluorescens in biofilms simulating dairy processing conditions, as well as the capability of P. fluorescens in co-culture to produce the blue pigment in a Ricotta-based model system. The biofilm-forming capability of single- and mixed-cultures was evaluated on polystyrene (PS) and stainless steel (SS) surfaces at 12 °C for 168 h. The biofilm biomass was measured, the planktonic and sessile cells and the carbohydrates in biofilms were quantified. The biofilms were also observed through Confocal Laser Scanning Microscopy analysis. Results showed that only P. fluorescens was able to form biofilms on PS. Moreover, in dual-species biofilms at the end of the incubation time (168 h at 12 °C), a lower biomass compared to P. fluorescens mono-species was observed on PS. On SS, the biofilm cell population of L. monocytogenes was higher in the dual-species than in mono-species, particularly after 48 h. Carbohydrates quantity in the dual-species system was higher than in mono-species and was revealed also at 168 h. The production of blue pigment by P. fluorescens was revealed both in single- and co-culture after 72 h of incubation (12 °C). This work highlights the interactions between the two species, under the experimental conditions studied in the present research, which can influence biofilm formation (biomass and sessile cells) but not the capability of P. fluorescens to produce blue pigment.

16.
Front Microbiol ; 12: 808286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35222307

RESUMO

Antimicrobial resistance (AMR) is a global concern, and new approaches are needed to circumvent animal and food-borne resistant pathogens. Among the new strategies, the combination of antibiotics with natural compounds such as essential oils (EOs) could be an alternative to challenge bacterial resistance. The present study evaluates the phenotypic and genotypic antibiotic resistance of 36 Salmonella enterica (16 S. Typhimurium, 3 monophasic variant S. Typhimurium, 8 S. Enteritidis, 6 S. Rissen, 1 S. Typhi, and 2 S. Derby) strains, isolated from the swine production chain. The isolates displayed phenotypic resistance to gentamicin, amikacin, tobramycin, and tetracycline, while the resistance genes most commonly detected were parC, catA, nfsB, nfsA, blaTEM, tetA, and tetB. Then 31/36 Salmonella isolates were chosen to evaluate resistance to tetracycline and Thymus vulgaris, Eugenia caryophyllata, and Corydothymus capitatus EOs by determining minimum inhibitory concentrations (MICs). Finally, the synergistic effect between tetracycline and each EOs was evaluated by the checkerboard method, calculating the fractional inhibitory concentration (FIC) index. Among the EOs, C. capitatus displayed the best bioactivity in terms of MICs, with the lowest values (0.31 and 0.625 µl/ml). On the contrary, the strains showed the ability to grow in the presence of the maximum concentration of tetracycline employed (256 µg/ml). While not displaying a real synergism according to the FIC index, the combination of tetracycline compounds and the three EOs resulted in a significant reduction in the MIC values to tetracycline (4 µg/ml), suggesting a restoration of the susceptibility to the antibiotic in Salmonella spp.

17.
Vet Ital ; 57(4): 311-318, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35593490

RESUMO

Some residents and people from the staff of a geriatric health care facility in Teramo province, developed acute gastroenteritis from March 8th to March 21st 2017. A prompt epidemiological investigation was conducted to identify the etiological agent, the trace back the potential ways of transmission and control the infection. Information on the outbreak was collected through an epidemiological questionnaire. Faecal samples from all human cases (n = 50) and swabs from environmental surfaces were collected and analysed by RT-PCR for the presence of Norovirus (NoV). Among faecal samples, 34 out of 50 were positive for NoV with no other pathogen detected. In particular, 2 (2/34) were positive to NoV genogroup I (GI), 31 (31/34) to NoV genogroup II (GII), and one sample (1/34) was positive to both NoV GI and GII. Moreover, faecal samples of people from the canteen (n = 8) were also tested resulting negative to NoV detection. Norovirus was also detected in 28 of the 122 swabs from environmental surfaces collected. Among the positive samples, 12 NoV strains were subtyped as NoV GII.4 Sydney_2012 variant. Person-to-person close contact and contaminated environmental surfaces were the probable transmission route among the people of the health care facility. The members of the staff were considered to play an important role in transmission of NoV. A proper disinfection procedure applied during the outbreak could have been critically important to limit the dissemination of the viral infection.


Assuntos
Infecções por Caliciviridae , Norovirus , Animais , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/veterinária , Atenção à Saúde , Surtos de Doenças , Genótipo , Humanos , Filogenia
18.
Nat Prod Res ; 35(24): 6020-6024, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32865042

RESUMO

In the present work, Cannabis sativa L. cv Futura 75 inflorescences, cultivated in the Abruzzo territory, were characterized for their volatile fraction through SPME-GC-MS. In addition, the essential oil extracted from these inflorescences was investigated for the antioxidant potentialities and for the terpenic profile. The antibacterial activity of hemp essential oil (HEO) against some pathogenic and spoilage microorganisms isolated from food was also evaluated by determining the minimal inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The results showed significant antioxidant capacity (DPPH: 63.38 ± 0.08 mg TE/g HEO; FRAP: 438.52 ± 6.92 mg TE/g HEO) alongside good antibacterial activity against Gram-positive bacteria such as S. aureus and L. monocytogenes (MIC 1.25-5 µL/mL). The results obtained suggest that hemp essential oil can inhibit or reduce bacterial growth, also exerting antioxidant activity, and therefore it can find an advantageous application in the food processing field.


Assuntos
Cannabis , Óleos Voláteis , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Staphylococcus aureus
19.
Foods ; 9(9)2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933210

RESUMO

The effect of two kinds of casings on the production and characteristics of a dry fermented sausage was investigated. In detail, an Italian product, naturally fermented at low temperatures and normally wrapped in beef casing instead of the most diffused hog one, was selected. Two different productions (one traditionally in beef casing (MCB) and another in hog casing (MCH)) were investigated over time to determine the differences particularly regarding proteolytic changes during fermentation and ripening. First of all, the product in hog casing required a longer ripening time, up to 120 days, instead of 45-50 days, because of the lower drying rate, while the microbial dynamics were not significantly modified. Conversely, the proteolysis showed a different evolution, being more pronounced, together with the biogenic amines content up to 341 mg/Kg instead of 265 mg/Kg for the traditional products. The latter products were instead characterized by higher quantities of total free amino acids, 3-methyl butanoic acid, 3-Methyl-1-butanal, and 2-Methylpropanal, enriching the final taste and aroma. The traditional product MCB also showed lower hardness and chewiness than MCH. The results highlight how the choice of casing has a relevant impact on the development of the final characteristics of fermented sausages.

20.
Foods ; 9(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823523

RESUMO

Only some animal species could be transformed into halal salami and the raw meat must be obtained from ritually slaughtered animals. Several scientific studies have been conducted on ritual slaughtering practices and manufacturing of meat products for Jewish and Muslim religious communities; furthermore, many projects have been funded by the European Community on this topic. The authenticity and traceability of meat is one of the priorities of halal food certification systems. The pig matrix (meat and/or lard) may be fraudulently present in halal processed meat, as well as salami, for both economic and technological purposes; in fact, the use of these raw materials reflects the easier availability and their lower cost; furthermore, it allows manufacturers to obtain final products with better quality (sensory properties) and stability (especially with respect to oxidative reactions). The aim of this review is to discuss the qualitative and technological aspects of halal raw meat for dry fermented sausages (salami); moreover, this study focuses on the most recent studies carried out on the certification system and on the analytical methods performed in order to solve problems such as fraud and adulteration of halal salami and other halal meat foods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA