Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(10): 825-835.e6, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37086718

RESUMO

Forces controlling tissue morphogenesis are attributed to cellular-driven activities, and any role for extracellular matrix (ECM) is assumed to be passive. However, all polymer networks, including ECM, can develop autonomous stresses during their assembly. Here, we examine the morphogenetic function of an ECM before reaching homeostatic equilibrium by analyzing de novo ECM assembly during Drosophila ventral nerve cord (VNC) condensation. Asymmetric VNC shortening and a rapid decrease in surface area correlate with the exponential assembly of collagen IV (Col4) surrounding the tissue. Concomitantly, a transient developmentally induced Col4 gradient leads to coherent long-range flow of ECM, which equilibrates the Col4 network. Finite element analysis and perturbation of Col4 network formation through the generation of dominant Col4 mutations that affect assembly reveal that VNC morphodynamics is partially driven by a sudden increase in ECM-driven surface tension. These data suggest that ECM assembly stress and associated network instabilities can actively participate in tissue morphogenesis.


Assuntos
Drosophila , Matriz Extracelular , Animais , Drosophila/genética , Matriz Extracelular/fisiologia , Morfogênese/fisiologia , Sistema Nervoso Central
2.
STAR Protoc ; 2(1): 100377, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33786460

RESUMO

Protein turnover rate is difficult to obtain experimentally. This protocol shows how to mathematically model turnover rates in an intervention-free manner given the ability to quantify mRNA and protein expression from initiation to homeostasis. This approach can be used to calculate production and degradation rates and to infer protein half-life. This model was successfully employed to quantify turnover during Drosophila embryogenesis, and we hypothesize that it will be applicable to diverse in vivo or in vitro systems. For complete details on the use and execution of this protocol, please refer to Matsubayashi et al. (2020).


Assuntos
Biologia Computacional/métodos , Proteólise , RNA Mensageiro/metabolismo , Animais , Drosophila/metabolismo , Expressão Gênica/genética , Homeostase , Cinética , Modelos Teóricos , Proteínas/metabolismo
3.
Dev Cell ; 54(1): 33-42.e9, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32585131

RESUMO

The extracellular matrix (ECM) is a polymer network hypothesized to form a stable cellular scaffold. While the ECM can undergo acute remodeling during embryogenesis, it is experimentally difficult to determine whether basal turnover is also important. Most studies of homeostatic turnover assume an initial steady-state balance of production and degradation and measure half-life by quantifying the rate of decay after experimental intervention (e.g., pulse labeling). Here, we present an intervention-free approach to mathematically model basal ECM turnover during embryogenesis by exploiting our ability to live image de novo ECM development in Drosophila to quantify production from initiation to homeostasis. This reveals rapid turnover (half-life ∼7-10 h), which we confirmed by in vivo pulse-chase experiments. Moreover, ECM turnover is partially dependent on proteolysis and network interactions, and slowing turnover affects tissue morphogenesis. These data demonstrate that embryonic ECM undergoes constant replacement, which is likely necessary to maintain network plasticity to accommodate growth and morphogenesis.


Assuntos
Matriz Extracelular/metabolismo , Homeostase , Morfogênese , Animais , Membrana Basal/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Modelos Teóricos
4.
Nat Cell Biol ; 21(11): 1370-1381, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31685997

RESUMO

Cell migration is hypothesized to involve a cycle of behaviours beginning with leading edge extension. However, recent evidence suggests that the leading edge may be dispensable for migration, raising the question of what actually controls cell directionality. Here, we exploit the embryonic migration of Drosophila macrophages to bridge the different temporal scales of the behaviours controlling motility. This approach reveals that edge fluctuations during random motility are not persistent and are weakly correlated with motion. In contrast, flow of the actin network behind the leading edge is highly persistent. Quantification of actin flow structure during migration reveals a stable organization and asymmetry in the cell-wide flowfield that strongly correlates with cell directionality. This organization is regulated by a gradient of actin network compression and destruction, which is controlled by myosin contraction and cofilin-mediated disassembly. It is this stable actin-flow polarity, which integrates rapid fluctuations of the leading edge, that controls inherent cellular persistence.


Assuntos
Actinas/genética , Movimento Celular/genética , Drosophila melanogaster/embriologia , Mecanotransdução Celular , Peixe-Zebra/embriologia , Actinas/metabolismo , Animais , Polaridade Celular , Rastreamento de Células , Cofilina 1/genética , Cofilina 1/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hemócitos/citologia , Hemócitos/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Miosinas/genética , Miosinas/metabolismo , Cultura Primária de Células , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteína Vermelha Fluorescente
5.
J Cell Sci ; 132(11)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31076510

RESUMO

Interactions between different cell types can induce distinct contact inhibition of locomotion (CIL) responses that are hypothesised to control population-wide behaviours during embryogenesis. However, our understanding of the signals that lead to cell-type specific repulsion and the precise capacity of heterotypic CIL responses to drive emergent behaviours is lacking. Using a new model of heterotypic CIL, we show that fibrosarcoma cells, but not fibroblasts, are actively repelled by epithelial cells in culture. We show that knocking down EphB2 or ERK in fibrosarcoma cells specifically leads to disruption of the repulsion phase of CIL in response to interactions with epithelial cells. We also examine the population-wide effects when these various cell combinations are allowed to interact in culture. Unlike fibroblasts, fibrosarcoma cells completely segregate from epithelial cells and inhibiting their distinct CIL response by knocking down EphB2 or ERK family proteins also disrupts this emergent sorting behaviour. These data suggest that heterotypic CIL responses, in conjunction with processes such as differential adhesion, may aid the sorting of cell populations.


Assuntos
Comunicação Celular/fisiologia , Inibição de Contato/fisiologia , Células Epiteliais/fisiologia , Fibroblastos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Células 3T3 , Animais , Linhagem Celular , Movimento Celular/fisiologia , Separação Celular , Desenvolvimento Embrionário/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Fibrossarcoma/metabolismo , Humanos , Camundongos , Receptor EphB2/genética
6.
Curr Biol ; 27(22): 3526-3534.e4, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29129537

RESUMO

The basement membrane (BM) is a thin layer of extracellular matrix (ECM) beneath nearly all epithelial cell types that is critical for cellular and tissue function. It is composed of numerous components conserved among all bilaterians [1]; however, it is unknown how all of these components are generated and subsequently constructed to form a fully mature BM in the living animal. Although BM formation is thought to simply involve a process of self-assembly [2], this concept suffers from a number of logistical issues when considering its construction in vivo. First, incorporation of BM components appears to be hierarchical [3-5], yet it is unclear whether their production during embryogenesis must also be regulated in a temporal fashion. Second, many BM proteins are produced not only by the cells residing on the BM but also by surrounding cell types [6-9], and it is unclear how large, possibly insoluble protein complexes [10] are delivered into the matrix. Here we exploit our ability to live image and genetically dissect de novo BM formation during Drosophila development. This reveals that there is a temporal hierarchy of BM protein production that is essential for proper component incorporation. Furthermore, we show that BM components require secretion by migrating macrophages (hemocytes) during their developmental dispersal, which is critical for embryogenesis. Indeed, hemocyte migration is essential to deliver a subset of ECM components evenly throughout the embryo. This reveals that de novo BM construction requires a combination of both production and distribution logistics allowing for the timely delivery of core components.


Assuntos
Membrana Basal/fisiologia , Matriz Extracelular/metabolismo , Animais , Membrana Basal/metabolismo , Movimento Celular/fisiologia , Colágeno/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Células Epiteliais/metabolismo , Matriz Extracelular/fisiologia , Macrófagos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA