Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
PLoS One ; 17(8): e0269823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35998134

RESUMO

COVID-19 pandemic has accelerated the development of vaccines against its etiologic agent, SARS-CoV-2. However, the emergence of new variants of the virus lead to the generation of new alternatives to improve the current sub-unit vaccines in development. In the present report, the immunogenicity of the Spike RBD of SARS-CoV-2 formulated with an oil-in-water emulsion and a water-in-oil emulsion with squalene was evaluated in mice and hamsters. The RBD protein was expressed in insect cells and purified by chromatography until >95% purity. The protein was shown to have the appropriate folding as determined by ELISA and flow cytometry binding assays to its receptor, as well as by its detection by hamster immune anti-S1 sera under non-reducing conditions. In immunization assays, although the cellular immune response elicited by both adjuvants were similar, the formulation based in water-in-oil emulsion and squalene generated an earlier humoral response as determined by ELISA. Similarly, this formulation was able to stimulate neutralizing antibodies in hamsters. The vaccine candidate was shown to be safe, as demonstrated by the histopathological analysis in lungs, liver and kidney. These results have shown the potential of this formulation vaccine to be evaluated in a challenge against SARS-CoV-2 and determine its ability to confer protection.


Assuntos
COVID-19 , Vacinas Virais , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Cricetinae , Emulsões , Humanos , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Pandemias/prevenção & controle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Esqualeno , Água
2.
Sci Rep ; 12(1): 10359, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725862

RESUMO

The coronavirus disease-19 (COVID-19) pandemic has already claimed millions of lives and remains one of the major catastrophes in the recorded history. While mitigation and control strategies provide short term solutions, vaccines play critical roles in long term control of the disease. Recent emergence of potentially vaccine-resistant and novel variants necessitated testing and deployment of novel technologies that are safe, effective, stable, easy to administer, and inexpensive to produce. Here we developed three recombinant Newcastle disease virus (rNDV) vectored vaccines and assessed their immunogenicity, safety, and protective efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in mice and hamsters. Intranasal administration of rNDV-based vaccine candidates elicited high levels of neutralizing antibodies. Importantly, the nasally administrated vaccine prevented lung damage, and significantly reduced viral load in the respiratory tract of vaccinated animal which was compounded by profound humoral immune responses. Taken together, the presented NDV-based vaccine candidates fully protected animals against SARS-CoV-2 challenge and warrants evaluation in a Phase I human clinical trial as a promising tool in the fight against COVID-19.


Assuntos
COVID-19 , Vacinas Virais , Administração Intranasal , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Cricetinae , Camundongos , Vírus da Doença de Newcastle/genética , SARS-CoV-2/genética , Vacinação , Vacinas Sintéticas/genética
3.
Rev. peru. biol. (Impr.) ; 26(2): 275-282, abr.-jun. 2019. ilus, tab
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1094380

RESUMO

En el presente estudio, las comunidades bacterianas en muestras de suelo y agua, procedentes de pozas artesanales de lixiviación con cianuro, fueron caracterizadas por análisis dependientes e independientes de cultivo. Para la caracterización de la comunidad bacteriana cultivable, se emplearon técnicas clásicas de microbiología hasta la obtención de cepas puras, las cuales fueron identificadas a nivel molecular. Por otro lado, las comunidades bacterianas no cultivables fueron caracterizadas por secuenciación de próxima generación del gen ARNr 16S. La comunidad bacteriana cultivable estaba principalmente representada por los géneros Pseudomonas, Bacillus y Acinetobacter; mientras que las comunidades no cultivables, predominantes en muestras de suelo, fueron los filos Proteobacteria (12.91%), Firmicutes (11.32%), Actinobacteria (11.25%) y Bacteroidetes (10.16%). Por otro lado, en muestras de agua predominaron los filos Firmicutes (59.16%) y Actinobacteria (38.99%).


In the present study, bacterial communities in soil and water samples, from artisanal leaching pools with cyanide, were characterized by dependent and independent culture analyzes. For the characterization of the culturable bacterial community, classical techniques of microbiology were used, until obtaining pure strains, which were identified at the molecular level. On the other hand, uncultured bacterial communities were characterized by next-generation sequencing of the 16S rRNA gene. The culturable bacterial community was mainly represented by the genera Pseudomonas, Bacillus and Acinetobacter; while the predominant uncultured communities, in soil samples, were the proteobacteria (12.91%), Firmicutes (11.32%), Actinobacteria (11.25%) and Bacteroidetes (10.16%). On the other hand, in water samples, the edges of Firmicutes (59.16%) and Actinobacteria (38.99%) predominated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA