Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Opin Microbiol ; 63: 126-132, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34340099

RESUMO

Leishmania are unusual in being able to survive long-term in the mature phagolysosome compartment of macrophages and other phagocytic cells in their mammalian hosts. Key to their survival in this niche, Leishmania amastigotes switch to a slow growth state and activate a stringent metabolic response. The stringent metabolic response may be triggered by multiple stresses and is associated with decreased metabolic fluxes, restricted use of sugars and fatty acids as carbon sources and increased dependence on metabolic homeostasis pathways. Heterogeneity in expression of the Leishmania stringent response occurs in vivo reflects temporal and spatial heterogeneity in lesion tissues and includes non-dividing dormant stages. This response underpins the capacity of these parasites to maintain long-term chronic infections and survive drug treatments.


Assuntos
Leishmania , Parasitos , Animais , Ácidos Graxos , Leishmania/genética , Macrófagos , Fagossomos
2.
Parasitology ; 137(9): 1303-13, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20158936

RESUMO

Leishmania spp. are sandfly-transmitted protozoa parasites that cause a spectrum of diseases in humans. Many enzymes involved in Leishmania central carbon metabolism differ from their equivalents in the mammalian host and are potential drug targets. In this review we summarize recent advances in our understanding of Leishmania central carbon metabolism, focusing on pathways of carbon utilization that are required for growth and pathogenesis in the mammalian host. While Leishmania central carbon metabolism shares many features in common with other pathogenic trypanosomatids, significant differences are also apparent. Leishmania parasites are also unusual in constitutively expressing most core metabolic pathways throughout their life cycle, a feature that may allow these parasites to exploit a range of different carbon sources (primarily sugars and amino acids) rapidly in both the insect vector and vertebrate host. Indeed, recent gene deletion studies suggest that mammal-infective stages are dependent on multiple carbon sources in vivo. The application of metabolomic approaches, outlined here, are likely to be important in defining aspects of central carbon metabolism that are essential at different stages of mammalian host infection.


Assuntos
Carbono/metabolismo , Leishmania/metabolismo , Leishmaniose/parasitologia , Animais , Metabolismo dos Carboidratos , Interações Hospedeiro-Parasita , Humanos , Espaço Intracelular/metabolismo , Leishmania/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Mitocôndrias/metabolismo , Parasitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA