Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(6): e0290721, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34781692

RESUMO

Oncogenic gammaherpesviruses express viral products during latent and lytic infection that block the innate immune response. Previously, we found that Kaposi's sarcoma herpesvirus (KSHV/human herpesvirus-8) viral microRNAs (miRNAs) downregulate cholesterol biogenesis, and we hypothesized that this prevents the production of 25-hydroxycholesterol (25HC), a cholesterol derivative. 25HC blocks KSHV de novo infection of primary endothelial cells at a postentry step and decreases viral gene expression of LANA (latency-associated nuclear antigen) and RTA. Herein we expanded on this observation by determining transcriptomic changes associated with 25HC treatment of primary endothelial cells using RNA sequencing (RNA-Seq). We found that 25HC treatment inhibited KSHV gene expression and induced interferon-stimulated genes (ISGs) and several inflammatory cytokines (interleukin 8 [IL-8], IL-1α). Some 25HC-induced genes were partially responsible for the broadly antiviral effect of 25HC against several viruses. Additionally, we found that 25HC inhibited infection of primary B cells by a related oncogenic virus, Epstein-Barr virus (EBV/human herpesvirus-4) by suppressing key viral genes such as LMP-1 and inducing apoptosis. RNA-Seq analysis revealed that IL-1 and IL-8 pathways were induced by 25HC in both primary endothelial cells and B cells. We also found that the gene encoding cholesterol 25-hydroxylase (CH25H), which converts cholesterol to 25HC, can be induced by type I interferon (IFN) in human B cell-enriched peripheral blood mononuclear cells (PBMCs). We propose a model wherein viral miRNAs target the cholesterol pathway to prevent 25HC production and subsequent induction of antiviral ISGs. Together, these results answer some important questions about a widely acting antiviral (25HC), with implications for multiple viral and bacterial infections. IMPORTANCE A cholesterol derivative, 25-hydroxycholesterol (25HC), has been demonstrated to inhibit infections from widely different bacteria and viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, its mechanism of activity is still not fully understood. In this work, we look at gene expression changes in the host and virus after 25HC treatment to find clues about its antiviral activity. We likewise demonstrate that 25HC is also antiviral against EBV, a common cancer-causing virus. We compared our results with previous data from antiviral screening assays and found the same pathways resulting in antiviral activity. Together, these results bring us closer to understanding how a modified form of cholesterol works against several viruses.


Assuntos
Citocinas/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 8/efeitos dos fármacos , Hidroxicolesteróis/farmacologia , Hidroxicolesteróis/uso terapêutico , Inflamação/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/virologia , Células Cultivadas , Citocinas/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/virologia , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Humanos , Hidroxicolesteróis/imunologia , Análise de Sequência de RNA , Latência Viral , Replicação Viral
2.
J Cell Biol ; 216(9): 2611-2613, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28819012

RESUMO

Herpesvirus genomes exist and replicate as episomes inside the host cell nucleus during latent infection. Chiu et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201702013) find that unlike Epstein-Barr virus, which partitions viral genomes faithfully during cell division, Kaposi's Sarcoma-associated herpesvirus clusters viral genomes into loci that are distributed unequally to daughter cells.


Assuntos
Herpesvirus Humano 8/genética , Replicação Viral , Genoma Viral , Herpesvirus Humano 4/genética , Humanos
3.
mBio ; 8(4)2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28698273

RESUMO

From various screens, we found that Kaposi's sarcoma-associated herpesvirus (KSHV) viral microRNAs (miRNAs) target several enzymes in the mevalonate/cholesterol pathway. 3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR [a rate-limiting step in the mevalonate pathway]), and farnesyl-diphosphate farnesyltransferase 1 (FDFT1 [a committed step in the cholesterol branch]) are repressed by multiple KSHV miRNAs. Transfection of viral miRNA mimics in primary endothelial cells (human umbilical vein endothelial cells [HUVECs]) is sufficient to reduce intracellular cholesterol levels; however, small interfering RNAs (siRNAs) targeting only HMGCS1 did not reduce cholesterol levels. This suggests that multiple targets are needed to perturb this tightly regulated pathway. We also report here that cholesterol levels were decreased in de novo-infected HUVECs after 7 days. This reduction is at least partially due to viral miRNAs, since the mutant form of KSHV lacking 10 of the 12 miRNA genes had increased cholesterol compared to wild-type infections. We hypothesized that KSHV is downregulating cholesterol to suppress the antiviral response by a modified form of cholesterol, 25-hydroxycholesterol (25HC). We found that the cholesterol 25-hydroxylase (CH25H) gene, which is responsible for generating 25HC, had increased expression in de novo-infected HUVECs but was strongly suppressed in long-term latently infected cell lines. We found that 25HC inhibits KSHV infection when added exogenously prior to de novo infection. In conclusion, we found that multiple KSHV viral miRNAs target enzymes in the mevalonate pathway to modulate cholesterol in infected cells during latency. This repression of cholesterol levels could potentially be beneficial to viral infection by decreasing the levels of 25HC.IMPORTANCE A subset of viruses express unique microRNAs (miRNAs), which act like cellular miRNAs to generally repress host gene expression. A cancer virus, Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus 8 [HHV-8]), encodes multiple miRNAs that repress gene expression of multiple enzymes that are important for cholesterol synthesis. In cells with these viral miRNAs or with natural infection, cholesterol levels are reduced, indicating these viral miRNAs decrease cholesterol levels. A modified form of cholesterol, 25-hydroxycholesterol, is generated directly from cholesterol. Addition of 25-hydroxycholesterol to primary cells inhibited KSHV infection of cells, suggesting that viral miRNAs may decrease cholesterol levels to decrease the concentration of 25-hydroxycholesterol and to promote infection. These results suggest a new virus-host relationship and indicate a previously unidentified viral strategy to lower cholesterol levels.


Assuntos
Colesterol/metabolismo , Herpesvirus Humano 8/efeitos dos fármacos , Herpesvirus Humano 8/genética , Hidroxicolesteróis/farmacologia , MicroRNAs/metabolismo , RNA Viral/metabolismo , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Linhagem Celular , Células Endoteliais/virologia , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Redes e Vias Metabólicas , MicroRNAs/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Esteroide Hidroxilases/genética , Latência Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA