Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899785

RESUMO

Many relevant high-temperature chemical processes require the use of oxide-supported metallic nanocatalysts. The harsh conditions under which these processes operate can trigger catalyst degradation via nanoparticle sintering, carbon depositions or poisoning, among others. This primarily affects metallic nanoparticles created via deposition methods with low metal-support interaction. In this respect, nanoparticle exsolution has emerged as a promising method for fabricating oxide-supported nanocatalysts with high interaction between the metal and the oxide support. This is due to the mechanism involved in nanoparticle exsolution, which is based on the migration of metal cations in the oxide support to its surface, where they nucleate and grow as metallic nanoparticles partially embedded in the oxide. This anchorage confers high robustness against sintering or coking-related problems. For these reasons, exsolution has attracted great interest in the last few years. Multiple works have been devoted to proving the high catalytic stability of exsolved metallic nanoparticles in several applications for high-temperature energy storage and conversion. Additionally, considerable attention has been directed towards understanding the underlying mechanism of metallic nanoparticle exsolution. However, this growing field has not been limited to these types of studies and recent discoveries at the forefront of materials design have opened new research avenues. In this work, we define six new trends in nanoparticle exsolution, taking a tour through the most important advances that have been recently reported.

2.
ACS Appl Energy Mater ; 7(1): 302-311, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38213555

RESUMO

Oxygen transport membranes (OTMs) are a promising oxygen production technology with high energy efficiency due to the potential for thermal integration. However, conventional perovskite materials of OTMs are unstable in CO2 atmospheres, which limits their applicability in oxycombustion processes. On the other hand, some dual-phase membranes are stable in CO2 and SO2 without permanent degradation. However, oxygen permeation is still insufficient; therefore, intensive research focuses on boosting oxygen permeation. Here, we present a novel dual-phase membrane composed of an ion-conducting fluorite phase (Ce0.8Tb0.2O2-δ, CTO) and an electronic-conducting spinel phase (Co2MnO4, CMO). CMO spinel exhibits high electronic conductivity (60 S·cm-1 at 800 °C) compared to other spinels used in dual-phase membranes, i.e., 230 times higher than that of NiFe2O4 (NFO). This higher conductivity ameliorates gas-solid surface exchange and bulk diffusion mechanisms. By activating the bulk membrane with a CMO/CTO porous catalytic layer, it was possible to achieve an oxygen flux of 0.25 mL·min-1·cm-2 for the 40CMO/60CTO (%vol), 680 µm-thick membrane at 850 °C even under CO2-rich environments. This dual-phase membrane shows excellent potential as an oxygen transport membrane or oxygen electrode under high CO2 and oxycombustion operation.

3.
Dalton Trans ; 52(17): 5771-5779, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37038971

RESUMO

This study concerns energetics of formation and the stability in high water partial pressure of BaLnCo2O6-δ, (Ln = La, Pr, Nd, and Gd) (BLnC) and BaGd1-xLaxCo2O6-δ, where x = 0.2, 0.5, and 0.7 (BGLC) double perovskite cobaltites. Those materials are extensively studied due to their potential applications as a positrode in electrochemical devices. Therefore, their stability under such conditions is a key issue. All investigated materials are thermodynamically stable relative to binary oxides and exhibit strongly exothermic enthalpies of formation. Moreover, BaGd0.3La0.7Co2O6-δ and BaGd0.8La0.2Co2O6-δ remain the main perovskite structure up to 3 bars of water vapor at 400 °C. At higher steam pressure, reaching 10 bar at 300 °C, the partial decomposition to constituent oxides and hydroxides was observed. The BGLC compounds exhibit higher negative formation enthalpies in comparison to single-Ln compositions, which does not translate into higher chemical stability under high steam pressures since the BLnC series retained the main perovskite structure at higher temperatures as well as in higher water vapor pressures.

4.
Dalton Trans ; 51(48): 18667-18677, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36448547

RESUMO

Ba1-xGd1-yLax+yCo2O6-δ (BGLC) compositions with large compositional ranges of Ba, Gd, and La have been characterised with respect to phase compositions, structure, and thermal and chemical expansion. The results show a system with large compositional flexibility, enabling tuning of functional properties and thermal and chemical expansion. We show anisotropic chemical expansion and detailed refinements of emerging phases as La is substituted for Ba and Gd. The dominating phase is the double perovskite structure Pmmm, which is A-site ordered along the c-axes and with O vacancy ordering along the b-axis in the Ln-layer. Phases emerging when substituting La for Ba are orthorhombic Ba-deficient Pbnm and cubic LaCoO3-based R3̄c. When La is almost completely substituted for Gd, the material can be stabilised in Pmmm, or cubic Pm3̄m, depending on thermal and atmospheric history. We list thermal expansion coefficients for x = 0-0.3, y = 0.2.

5.
Science ; 376(6591): 390-393, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35446633

RESUMO

Proton ceramic reactors offer efficient extraction of hydrogen from ammonia, methane, and biogas by coupling endothermic reforming reactions with heat from electrochemical gas separation and compression. Preserving this efficiency in scale-up from cell to stack level poses challenges to the distribution of heat and gas flows and electric current throughout a robust functional design. Here, we demonstrate a 36-cell well-balanced reactor stack enabled by a new interconnect that achieves complete conversion of methane with more than 99% recovery to pressurized hydrogen, leaving a concentrated stream of carbon dioxide. Comparable cell performance was also achieved with ammonia, and the operation was confirmed at pressures exceeding 140 bars. The stacking of proton ceramic reactors into practical thermo-electrochemical devices demonstrates their potential in efficient hydrogen production.

6.
J Appl Crystallogr ; 53(Pt 6): 1471-1483, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33304224

RESUMO

Mixed ionic electronic conducting ceramics Nd6-y WO12-δ (δ is the oxygen deficiency) provide excellent stability in harsh environments containing strongly reactive gases such as CO2, CO, H2, H2O or H2S. Due to this chemical stability, they are promising and cost-efficient candidate materials for gas separation, catalytic membrane reactors and protonic ceramic fuel cell technologies. As in La6-y WO12-δ, the ionic/electronic transport mechanism in Nd6-y WO12-δ is expected to be largely controlled by the crystal structure, the conclusive determination of which is still lacking. This work presents a crystallographic study of Nd5.8WO12-δ and molybdenum-substituted Nd5.7W0.75Mo0.25O12-δ prepared by the citrate complexation route. High-resolution synchrotron and neutron powder diffraction data were used in combined Rietveld refinements to unravel the crystal structure of Nd5.8WO12-δ and Nd5.7W0.75Mo0.25O12-δ. Both investigated samples crystallize in a defect fluorite crystal structure with space group Fm 3 m and doubled unit-cell parameter due to cation ordering. Mo replaces W at both Wyckoff sites 4a and 48h and is evenly distributed, in contrast with La6-y WO12-δ. X-ray absorption spectroscopy as a function of partial pressure pO2 in the near-edge regions excludes oxidation state changes of Nd (Nd3+) and W (W6+) in reducing conditions: the enhanced hydrogen permeation, i.e. ambipolar conduction, observed in Mo-substituted Nd6-y WO12-δ is therefore explained by the higher Mo reducibility and the creation of additional - disordered - oxygen vacancies.

7.
Materials (Basel) ; 13(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933063

RESUMO

The application of double perovskite cobaltites BaLnCo2O6-δ (Ln = lanthanide element) in electrochemical devices for energy conversion requires control of their properties at operating conditions. This work presents a study of a series of BaLnCo2O6-δ (Ln = La, Pr, Nd) with a focus on the evolution of structural and electrical properties with temperature. Symmetry, oxygen non-stoichiometry, and cobalt valence state have been examined by means of Synchrotron Radiation Powder X-ray Diffraction (SR-PXD), thermogravimetry (TG), and X-ray Absorption Spectroscopy (XAS). The results indicate that all three compositions maintain mainly orthorhombic structure from RT to 1000 °C. Chemical expansion from Co reduction and formation of oxygen vacancies is observed and characterized above 350 °C. Following XAS experiments, the high spin of Co was ascertained in the whole range of temperatures for BLC, BPC, and BNC.

8.
Membranes (Basel) ; 10(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824887

RESUMO

Lanthanum tungstate (La6WO12) is a promising material for the development of hydrogen separation membranes, proton ceramic electrolyzer cells and protonic ceramic fuel cells due to its interesting transport properties and stability under different operation conditions. In order to improve the hydrogen transport through the La6WO12 membranes, thin membranes should be manufactured. This work is based on the industrial production of La5.5WO11.25-δ (LWO) powder by spray drying and the manufacturing of thin membranes by low-pressure plasma spraying (LPPS-TF) technique. LPPS-TF allows the production of dense thin films of high quality in an industrial scale. The powders produced by spray drying were morphological and electrochemically characterized. Hydrogen permeation fluxes of a membrane manufactured with these powders were evaluated and fluxes are similar to those reported previously for LWO powder produced in the lab scale. Finally, the transport properties of LWO thin films deposited on Al2O3 indicate that LPPS-TF produces high-quality LWO films with potential for integration in different applications.

9.
Membranes (Basel) ; 10(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664201

RESUMO

The particular operational conditions of electrochemical cells make the simultaneous characterization of both structural and transport properties challenging. The rapidity and flexibility of the acquisition of Raman spectra places this technique as a good candidate to measure operating properties and changes. Raman spectroscopy has been applied to well-known lanthanide ceria materials and the structural dependence on the dopant has been extracted. The evolution of Pr-doped ceria with temperature has been recorded by means of a commercial cell showing a clear increment in oxygen vacancies concentration. To elucidate the changes undergone by the electrolyte or membrane material in cell operation, the detailed construction of a homemade Raman cell is reported. The cell can be electrified, sealed and different gases can be fed into the cell chambers, so that the material behavior in the reaction surface and species evolved can be tracked. The results show that the Raman technique is a feasible and rather simple experimental option for operating characterization of solid-state electrochemical cell materials, although the treatment of the extracted data is not straightforward.

10.
Nat Mater ; 18(7): 752-759, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31160804

RESUMO

Hydrogen production from water electrolysis is a key enabling energy storage technology for the large-scale deployment of intermittent renewable energy sources. Proton ceramic electrolysers (PCEs) can produce dry pressurized hydrogen directly from steam, avoiding major parts of cost-driving downstream separation and compression. However, the development of PCEs has suffered from limited electrical efficiency due to electronic leakage and poor electrode kinetics. Here, we present the first fully operational BaZrO3-based tubular PCE, with 10 cm2 active area and a hydrogen production rate above 15 Nml min-1. The novel steam anode Ba1-xGd0.8La0.2+xCo2O6-δ exhibits mixed p-type electronic and protonic conduction and low activation energy for water splitting, enabling total polarization resistances below 1 Ω cm2 at 600 °C and Faradaic efficiencies close to 100% at high steam pressures. These tubular PCEs are mechanically robust, tolerate high pressures, allow improved process integration and offer scale-up modularity.

11.
Membranes (Basel) ; 9(4)2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970627

RESUMO

CsH2PO4 is a proton conductor pertaining to the acid salts group and shows a phase transition from monoclinic to cubic phase at 232 ± 2 °C under high-steam atmospheres (>30%). This cubic phase gives rise to the so-called superprotonic conductivity. In this work, the influence of the partial substitution of Cs by Ba and Rb, as well as the partial substitution of P by W, Mo, and S in CsH2PO4 on the phase transition temperature and electrochemical properties is studied. Among the tested materials, the partial substitution by Rb led to the highest conductivity at high temperature. Furthermore, Ba and S-substituted salts exhibited the highest conductivity at low temperatures. CsH2PO4 was used as electrolyte in a fully-assembled fuel cell demonstrating the applicability of the material at high pressures and the possibility to use other materials (Cu and ZnO) instead of Pt as electrode electrocatalyst. Finally, an electrolyzer cell composed of CsH2PO4 as electrolyte, Cu and ZnO as cathode and Pt and Ag as anode was evaluated, obtaining a stable production of H2 at 250 °C.

12.
RSC Adv ; 9(36): 20677-20686, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35515552

RESUMO

Backbone electrodes based on an electronic conductor and a protonic conductor show advantages for proton ceramic electrolyzer cells (PCECs). This work, aims to shed further light on the nature of the rate determining steps in the anode operation and improve the reaction rate in high steam pressure electrolysis mode by (i) adjusting their catalytic activity through electrode infiltration with catalytic electronic-conducting nanoparticles; and (ii) electrochemical activation of surface species by applying a net current through the electrode. A composite formed by La0.8Sr0.2MnO3-δ (LSM) and BaCe0.2Zr0.7Y0.1O3-δ (BCZY27) was deposited on proton-conducting BCZY27 electrolytes and studied in symmetrical cells to investigate the anode microstructure and electrochemical performance. Electrochemical impedance spectroscopy (EIS) measurements were performed in the 800-500 °C range under 3 bar of pressure of wet air (75% of steam). LSM/BCZY27 50/50 vol% showed the best performance with an electrode polarization resistance (R p) of 6.04 Ω cm2 at 700 °C and high steam pressure (0.75 bar of air and 2.25 bar of steam) whereas LSM/BCZY27 60/40 vol% presented a R p of 18.9 Ω cm2. The backbone electrodes were infiltrated using aqueous solutions of metal precursors to boost the electrocatalytic activity towards water splitting and oxygen evolution. The infiltrated cells were fired at 850 °C for 2 h to obtain the desired crystalline nanoparticles (Pr6O11, CeO2, ZrO2 and Pr6O11-CeO2) and electrochemically tested under high steam pressures and bias currents to investigate the influence of catalytic activation on surface exchange kinetics. Among the tested catalysts, the lowest electrode polarization resistances (<0.2 Ω cm2) were reached for the Pr6O11, CeO2 and Pr6O11-CeO2 catalysts at 700 °C by applying current densities ranging from 1.57 to 14.15 mA cm-2, and the Pr6O11-CeO2-activated LSM/BCZY27 electrode exhibited the best performance. Finally, the effect of pO2 and pH2O was investigated aiming to characterize the rate limiting processes in the electrodes.

13.
Sensors (Basel) ; 18(9)2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30205494

RESUMO

Gas exhaust emissions in vehicles are increasingly restrictive in EU and USA. Diesel engines are particularly affected by limitation in hydrocarbons and NOx concentrations. This work presents a screening of working electrode materials to develop a potentiometric sensor, with the most promising material to detect being C2H4 at 550 °C. The device consists of a dense 8YSZ (8 mol% Y2O3 stabilized ZrO2) disk as oxide-ion conducting electrolyte, whereas platinum is screen-printed in the back face as reference electrode. As working electrode, several materials such as Fe0.7Cr1.3O3, ZnCr2O4, Fe2NiO4, La0.8Sr0.2CrO3-δ (LSC), La0.8Sr0.2MnO3 (LSM), and NiO+5%wt Au were tested to detect C2H4. Sensor voltage was measured for several concentrations of C2H4 and CO as these are two of the major oxidizable compounds in a diesel exhaust gas. Fe0.7Cr1.3O3 was selected as the most promising material because of its response to C2H4 and CO. Not only is the response to the individual analytes important, but the C2H4 cross-sensitivity toward CO is also important. Fe0.7Cr1.3O3 showed a good performance to C2H4, with low cross-sensitivity to CO. In addition, when 0.16 ppm of phenanthrene is added, the sensor still has a slightly better response to C2H4 than to CO. Nevertheless, the sensor exposure to high concentrations (>85 ppm) of polycyclic aromatic hydrocarbons led to signal saturation. On the other hand, the operation in wet conditions induces lower sensor sensitivity to C2H4 and higher cross-sensitivity toward CO increase, i.e., the sensor response becomes similar for C2H4 and CO.

14.
ChemSusChem ; 11(16): 2818-2827, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-29989384

RESUMO

NiFe2 O4 -Ce0.8 Gd0.2 O2-δ (NFO/CGO) nanocomposite thin films were prepared by simultaneously radio-frequency (RF) magnetron sputtering of both NFO and CGO targets. The aim is the growth of a CO2 -stable composite layer that combines the electronic and ionic conduction of the separate NFO and the CGO phases for oxygen separation. The effect of the deposition temperature on the microstructure of the film was studied to obtain high-quality composite thin films. The ratio of both phases was changed by applying different power to each ceramic target. The amount of each deposited phase as well as the different oxidation states of the nanocomposite constituents were analyzed by means of X-ray photoelectron spectroscopy (XPS). The transport properties were studied by conductivity measurements as a function of temperature and pO2 . These analyses enabled (1) selection of the best deposition temperature (400 °C), (2) correlation of the p-type electronic behavior of the NFO phase with the hole hopping between Ni3+ -Ni2+ , and (3) following the conductivity behavior of the grown composite layer (prevailing ionic or electronic character) attained by varying the amount of each phase. The sputtered layer exhibited high ambipolar conduction and surfaceexchange activity. A 150 nm-thick nanograined thin film was deposited on a 20 µm-thick Ba0.5 Sr0.5 Co0.8 Fe0.2 O3-δ asymmetric membrane, resulting in up to 3.8 mL min-1 cm-2 O2 permeation at 1000 °C under CO2 atmosphere.

15.
Sci Rep ; 6: 34773, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27812011

RESUMO

Hydrogen permeation membranes are a key element in improving the energy conversion efficiency and decreasing the greenhouse gas emissions from energy generation. The scientific community faces the challenge of identifying and optimizing stable and effective ceramic materials for H2 separation membranes at elevated temperature (400-800 °C) for industrial separations and intensified catalytic reactors. As such, composite materials with nominal composition BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ revealed unprecedented H2 permeation levels of 0.4 to 0.61 mL·min-1·cm-2 at 700 °C measured on 500 µm-thick-specimen. A detailed structural and phase study revealed single phase perovskite and fluorite starting materials synthesized via the conventional ceramic route. Strong tendency of Eu to migrate from the perovskite to the fluorite phase was observed at sintering temperature, leading to significant Eu depletion of the proton conducing BaCe0.8Eu0.2O3-δ phase. Composite microstructure was examined prior and after a variety of functional tests, including electrical conductivity, H2-permeation and stability in CO2 containing atmospheres at elevated temperatures, revealing stable material without morphological and structural changes, with segregation-free interfaces and no further diffusive effects between the constituting phases. In this context, dual phase material based on BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ represents a very promising candidate for H2 separating membrane in energy- and environmentally-related applications.

16.
ChemSusChem ; 8(24): 4242-9, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26586419

RESUMO

Dual-phase membranes are appealing candidates for oxygen transport membranes owing to their unique combination of ambipolar electron-ion transport and endurance. However, O2 separation in industrial environments demands very high stability and effectiveness in the presence of CO2- and SO2-bearing process gases. Here, the composition of dual-phase membranes based on NiFe2O4-Ce(0.8) Tb(0.2)O(2-δ) (NFO-CTO) was optimized and the effective performance of catalytically-activated membranes was assessed in presence of CO2 and SO2. Further insight into the limiting mechanisms in the permeation was gained through electrical conductivity studies, permeation testing in several conditions and impedance spectroscopy analysis. The dual-phase membranes were prepared by one-pot sol-gel method and their permeability increases with increasing fluorite content. An O2 flux of 0.25 (ml min(-1) cm(-2)) mm at 1000 °C was obtained for a thick self-standing membrane with 40:60 NFO/CTO composition. An in-depth study mimicking typical harsh conditions encountered in oxyfuel flue gases was performed on a 50:50 NFO/CTO membrane. CO2 content as well as SO2 presence in the sweep gas stream were evaluated in terms of O2 permeation. O2 fluxes of 0.13 and 0.09 mL min(-1) cm(-2) at 850 °C were obtained for a 0.59 mm thick membrane under CO2 and 250 ppm SO2 in CO2 sweep conditions, respectively. Extended periods at work under CO2- and SO2-containing atmospheres revealed good permeation stability over time. Additionally, XRD, backscattered electrons detector (BSD)-SEM, and energy-dispersive X-ray spectroscopy (EDS) analysis of the spent membrane confirmed material stability upon prolonged exposure to SO2.


Assuntos
Dióxido de Carbono/química , Membranas Artificiais , Oxigênio/química , Dióxido de Enxofre/química , Permeabilidade
17.
ChemSusChem ; 7(9): 2554-61, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25070608

RESUMO

Dual-phase oxygen-permeable asymmetric membranes with enhanced oxygen permeation were prepared by combining freeze-casting, screen-printing, and constraint-sintering techniques. The membranes were evaluated under oxyfuel operating conditions. The prepared membranes are composed of an original ice-templated La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3-δ) support with hierarchically oriented porosity and a top fully densified bilayered coating comprising a 10 µm-thick La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3-δ) layer and a top protective 8 µm-thick layer made of an optimized NiFe2O4/Ce(0.8)Tb(0.2)O(2-δ) composite synthesized by the one-pot Pechini method. Preliminary analysis confirmed the thermochemical compatibility of the three involved phases at high temperature without any additional phase detected. This membrane exhibited a promising oxygen permeation value of 4.8 mL min(-1) cm(-2) at 1000 °C upon using Ar and air as the sweep and feed gases, respectively. Mimicking oxyfuel operating conditions by switching argon to pure CO2 as a sweep gas at 1000 °C and air as feed enabled an oxygen flux value of 5.6 mL min(-1) cm(-2) to be reached. Finally, under the same conditions and increasing the oxygen partial pressure to 0.1 MPa in the feed, the oxygen permeation reached 12 mL min(-1) cm(-2). The influence of CO2 content in the sweep gas was studied and its reversible and positive effect over oxygen permeation at temperatures equal to or above 950 °C was revealed. Finally, the membrane stability over a period of 150 h under CO2-rich sweep gas showed a low degradation rate of 2.4×10(-2)  mL min(-1) cm(-2) per day.


Assuntos
Congelamento , Membranas Artificiais , Oxigênio/isolamento & purificação , Permeabilidade
18.
Dalton Trans ; 43(11): 4305-12, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24141898

RESUMO

10% Praseodymium doped ceria exhibits a combination of mixed ionic and electronic conductivity, redox catalytic properties and chemical compatibility with water and carbon dioxide at high temperatures. Minor additions of cobalt oxide have been demonstrated to act as a sintering aid as well as an effective promoter of the electronic conduction. However, an excess of sintering temperature causes cobalt aggregation into the grain boundaries as inferred from FE-SEM/EDX and TEM analysis. The redox behaviour of the materials was studied by means of temperature programmed desorption (TPD) and reduction (TPR). This work shows the systematic study of sintering conditions in order to understand the evolution of the material microstructure, grain boundaries and the role of cobalt in this complex system. The final purpose of the work is to improve both electronic and oxygen ion transport properties for their potential application as oxygen-transport membranes and solid oxide fuel cell components. The sample sintered at 1000 °C exhibited the highest total conductivity at high temperatures, which is principally related to the improvement in the electronic conductivity through the grain boundary network.

19.
Inorg Chem ; 52(18): 10375-86, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-24000891

RESUMO

Mixed proton-electron conductors (MPEC) can be used as gas separation membranes to extract hydrogen from a gas stream, for example, in a power plant. From the different MPEC, the ceramic material lanthanum tungstate presents an important mixed protonic-electronic conductivity. Lanthanum tungstate La(6-x)WO(12-y) (with y = 1.5x + δ and x = 0.5-0.8) compounds were prepared with La/W ratios between 4.8 and 6.0 and sintered at temperatures between 1300 and 1500 °C in order to study the dependence of the single-phase formation region on the La/W ratio and temperature. Furthermore, compounds substituted in the La or W position were prepared. Ce, Nd, Tb, and Y were used for partial substitution at the La site, while Ir, Re, and Mo were applied for W substitution. All substituents were applied in different concentrations. The electrical conductivity of nonsubstituted La(6-x)WO(12-y) and for all substituted La(6-x)WO(12-y) compounds was measured in the temperature range of 400-900 °C in wet (2.5% H2O) and dry mixtures of 4% H2 in Ar. The greatest improvement in the electrical characteristics was found in the case of 20 mol % substitution with both Re and Mo. After treatment in 100% H2 at 800 °C, the compounds remained unchanged as confirmed with XRD, Raman, and SEM.

20.
ChemSusChem ; 6(8): 1523-32, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23828818

RESUMO

La(5.5) WO11.25-δ is a proton-conducting oxide that shows high protonic conductivity, sufficient electronic conductivity, and stability in moist CO2 environments. However, the H2 flows achieved to date when using La(5.5) WO11.25-δ membranes are still below the threshold for practical application in industrial processes. With the aim of improving the H2 flow obtained with this material, La(5.5) WO11.25-δ was doped in the W position by using Re and Mo; the chosen stoichiometry was La(5.5) W0.8 M0.2 O11.25-δ . This work presents the electrochemical characterization of these two compounds under reducing conditions, the H2 separation properties, as well as the influence of the H2 concentration in the feed stream, degree of humidification, and operating temperature. Doping with both Re and Mo enabled the magnitude of H2 permeation to be enhanced, reaching unrivaled values of up to 0.095 mL min(-1) cm(-2) at 700 °C for a La(5.5) W0.8 Re0.2 O11.25-δ membrane (760 µm thick). The spent membranes were investigated by using XRD, SEM, and TEM on focused-ion beam lamellas. Furthermore, the stability in CO2 -rich and H2 S-containing atmospheres was evaluated, and the compounds were shown to be stable in the atmospheres studied.


Assuntos
Condutividade Elétrica , Lantânio/química , Membranas Artificiais , Óxidos/química , Polímeros/química , Prótons , Compostos de Tungstênio/química , Atmosfera , Dióxido de Carbono/química , Permeabilidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA