Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(8): e0202009, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30157226

RESUMO

There are many possible strategies to promote naturalization in anthropogenic landscapes to mitigate global change effects. We combined large-scale databases available for continental Spain on: (1) distribution of breeding birds, (2) forest inventory stands, (3) land-use cover, (4) 18 global climate models recently developed at local scales, and (5) historical and genetically-based information on the distribution of natural versus planted pine forests, to analyze whether back to nature strategies may help to mitigate biodiversity loss due to climate change. We performed the analysis along environmental and ecological gradients of pine forests in Southern Europe. Models suggested that, naturalization strategies, in this case defined by the replacement of planted pine forests and eucalyptus forests by natural pine forests, could help to mitigate the expected loss of bird diversity due to climate change, but that mitigation efficiency will vary along environmental and ecological gradients. Maximum levels of diversity mitigation were predicted at intermediate levels of naturalization, with lower bird richness in areas where all pine forests were either planted or naturalized. Efficiency also varied spatially, given that both cold- and hot-spots of climate-driven bird diversity loss were identified. Transforming planted forest into natural forest is not a mitigation panacea, and additional regionally-adapted strategies may be identified to mitigate the expected biodiversity loss in forest ecosystems.


Assuntos
Biodiversidade , Aves/fisiologia , Mudança Climática , Espécies em Perigo de Extinção , Florestas , Animais , Biomassa
2.
Mol Ecol ; 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29972881

RESUMO

Teasing apart the effects of natural selection and demography on current allele frequencies is challenging, due to both processes leaving a similar molecular footprint. In particular, when attempting to identify selection in species that have undergone a recent range expansion, the increase in genetic drift at the edges of range expansions ("allele surfing") can be a confounding factor. To address this potential issue, we first assess the long-range colonization history of the Aleppo pine across the Mediterranean Basin, using molecular markers. We then look for single nucleotide polymorphisms (SNPs) involved in local adaptation using: (a) environmental correlation methods (bayenv2), focusing on bioclimatic variables important for the species' adaptation (i.e., temperature, precipitation and water availability); and (b) FST -related methods (pcadapt). To assess the rate of false positives caused by the allele surfing effect, these results are compared with results from simulated SNP data that mimics the species' past range expansions and the effect of genetic drift, but with no selection. We find that the Aleppo pine shows a previously unsuspected complex genetic structure across its range, as well as evidence of selection acting on SNPs involved with the response to bioclimatic variables such as drought. This study uses an original approach to disentangle the confounding effects of drift and selection in range margin populations. It also contributes to the increased evidence that plant populations are able to adapt to new environments despite the expected accumulation of deleterious mutations that takes place during long-range colonizations.

3.
PLoS One ; 12(2): e0171549, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28192454

RESUMO

Climate change is gravely affecting forest ecosystems, resulting in large distribution shifts as well as in increasing infection diseases and biological invasions. Accordingly, forest management requires an evaluation of exposure to climate change that should integrate both its abiotic and biotic components. Here we address the implications of climate change in an emerging disease by analysing both the host species (Pinus pinaster, Maritime pine) and the pathogen's (Fusarium circinatum, pitch canker) environmental suitability i.e. estimating the host's risk of habitat loss and the disease`s future environmental range. We constrained our study area to the Spanish Iberian Peninsula, where accurate climate and pitch canker occurrence databases were available. While P. pinaster is widely distributed across the study area, the disease has only been detected in its north-central and north-western edges. We fitted species distribution models for the current distribution of the conifer and the disease. Then, these models were projected into nine Global Climate Models and two different climatic scenarios which totalled to 18 different future climate predictions representative of 2050. Based on the level of agreement among them, we created future suitability maps for the pine and for the disease independently, which were then used to assess exposure of current populations of P. pinaster to abiotic and biotic effects of climate change. Almost the entire distribution of P. pinaster in the Spanish Iberian Peninsula will be subjected to abiotic exposure likely to be driven by the predicted increase in drought events in the future. Furthermore, we detected a reduction in exposure to pitch canker that will be concentrated along the north-western edge of the study area. Setting up breeding programs is recommended in highly exposed and productive populations, while silvicultural methods and monitoring should be applied in those less productive, but still exposed, populations.


Assuntos
Mudança Climática , Clima , Conservação dos Recursos Naturais/métodos , Fusarium/fisiologia , Pinus/microbiologia , Ecossistema , Agricultura Florestal/métodos , Geografia , Interações Hospedeiro-Patógeno , Modelos Teóricos , Doenças das Plantas/microbiologia , Chuva , Espanha , Temperatura
4.
Ecol Appl ; 26(7): 2254-2266, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27755736

RESUMO

Preserving intraspecific genetic diversity is essential for long-term forest sustainability in a climate change scenario. Despite that, genetic information is largely neglected in conservation planning, and how conservation units should be defined is still heatedly debated. Here, we use maritime pine (Pinus pinaster Ait.), an outcrossing long-lived tree with a highly fragmented distribution in the Mediterranean biodiversity hotspot, to prove the importance of accounting for genetic variation, of both neutral molecular markers and quantitative traits, to define useful conservation units. Six gene pools associated to distinct evolutionary histories were identified within the species using 12 microsatellites and 266 single nucleotide polymorphisms (SNPs). In addition, height and survival standing variation, their genetic control, and plasticity were assessed in a multisite clonal common garden experiment (16 544 trees). We found high levels of quantitative genetic differentiation within previously defined neutral gene pools. Subsequent cluster analysis and post hoc trait distribution comparisons allowed us to define 10 genetically homogeneous population groups with high evolutionary potential. They constitute the minimum number of units to be represented in a maritime pine dynamic conservation program. Our results uphold that the identification of conservation units below the species level should account for key neutral and adaptive components of genetic diversity, especially in species with strong population structure and complex evolutionary histories. The environmental zonation approach currently used by the pan-European genetic conservation strategy for forest trees would be largely improved by gradually integrating molecular and quantitative trait information, as data become available.


Assuntos
Conservação dos Recursos Naturais , Variação Genética , Pinus/genética , Demografia , Europa (Continente) , Florestas , Marcadores Genéticos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA