Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1307374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660491

RESUMO

Cutaneous diseases (such as atopic dermatitis, acne, psoriasis, alopecia and chronic wounds) rank as the fourth most prevalent human disease, affecting nearly one-third of the world's population. Skin diseases contribute to significant non-fatal disability globally, impacting individuals, partners, and society at large. Recent evidence suggests that specific microbes colonising our skin and its appendages are often overrepresented in disease. Therefore, manipulating interactions of the microbiome in a non-invasive and safe way presents an attractive approach for management of skin and hair follicle conditions. Due to its proven anti-microbial and anti-inflammatory effects, blue light (380 - 495nm) has received considerable attention as a possible 'magic bullet' for management of skin dysbiosis. As humans, we have evolved under the influence of sun exposure, which comprise a significant portion of blue light. A growing body of evidence indicates that our resident skin microbiome possesses the ability to detect and respond to blue light through expression of chromophores. This can modulate physiological responses, ranging from cytotoxicity to proliferation. In this review we first present evidence of the diverse blue light-sensitive chromophores expressed by members of the skin microbiome. Subsequently, we discuss how blue light may impact the dialog between the host and its skin microbiome in prevalent skin and hair follicle conditions. Finally, we examine the constraints of this non-invasive treatment strategy and outline prospective avenues for further research. Collectively, these findings present a comprehensive body of evidence regarding the potential utility of blue light as a restorative tool for managing prevalent skin conditions. Furthermore, they underscore the critical unmet need for a whole systems approach to comprehend the ramifications of blue light on both host and microbial behaviour.


Assuntos
Luz Azul , Microbiota , Pele , Animais , Humanos , Disbiose/microbiologia , Pele/microbiologia , Pele/efeitos da radiação , Dermatopatias/microbiologia
2.
Appl Environ Microbiol ; 90(4): e0203523, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38440981

RESUMO

The generation of nitrite by the oral microbiota is believed to contribute to healthy cardiovascular function, with oral nitrate reduction to nitrite associated with systemic blood pressure regulation. There is the potential to manipulate the composition or activities of the oral microbiota to a higher nitrate-reducing state through nitrate supplementation. The current study examined microbial community composition and enzymatic responses to nitrate supplementation in sessile oral microbiota grown in continuous culture. Nitrate reductase (NaR) activity and nitrite concentrations were not significantly different to tongue-derived inocula in model biofilms. These were generally dominated by Streptococcus spp., initially, and a single nitrate supplementation resulted in the increased relative abundance of the nitrate-reducing genera Veillonella, Neisseria, and Proteus spp. Nitrite concentrations increased concomitantly and continued to increase throughout oral microbiota development. Continuous nitrate supplementation, over a 7-day period, was similarly associated with an elevated abundance of nitrate-reducing taxa and increased nitrite concentration in the perfusate. In experiments in which the models were established in continuous low or high nitrate environments, there was an initial elevation in nitrate reductase, and nitrite concentrations reached a relatively constant concentration over time similar to the acute nitrate challenge with a similar expansion of Veillonella and Neisseria. In summary, we have investigated nitrate metabolism in continuous culture oral biofilms, showing that nitrate addition increases nitrate reductase activity and nitrite concentrations in oral microbiota with the expansion of putatively NaR-producing taxa.IMPORTANCEClinical evidence suggests that blood pressure regulation can be promoted by nitrite generated through the reduction of supplemental dietary nitrate by the oral microbiota. We have utilized oral microbiota models to investigate the mechanisms responsible, demonstrating that nitrate addition increases nitrate reductase activity and nitrite concentrations in oral microbiota with the expansion of nitrate-reducing taxa.


Assuntos
Microbiota , Nitratos , Humanos , Nitratos/metabolismo , Nitritos/metabolismo , Óxido Nítrico/metabolismo , Nitrato Redutase
3.
NPJ Biofilms Microbiomes ; 8(1): 96, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509765

RESUMO

Extracellular DNA (eDNA) is a key component of many microbial biofilms including dental plaque. However, the roles of extracellular deoxyribonuclease (DNase) enzymes within biofilms are poorly understood. Streptococcus gordonii is a pioneer colonizer of dental plaque. Here, we identified and characterised SsnA, a cell wall-associated protein responsible for extracellular DNase activity of S. gordonii. The SsnA-mediated extracellular DNase activity of S. gordonii was suppressed following growth in sugars. SsnA was purified as a recombinant protein and shown to be inactive below pH 6.5. SsnA inhibited biofilm formation by Streptococcus mutans in a pH-dependent manner. Further, SsnA inhibited the growth of oral microcosm biofilms in human saliva. However, inhibition was ameliorated by the addition of sucrose. Together, these data indicate that S. gordonii SsnA plays a key role in interspecies competition within oral biofilms. Acidification of the medium through sugar catabolism could be a strategy for cariogenic species such as S. mutans to prevent SsnA-mediated exclusion from biofilms.


Assuntos
Placa Dentária , Streptococcus gordonii , Humanos , Streptococcus gordonii/genética , Streptococcus mutans , Biofilmes , Saliva
4.
Appl Environ Microbiol ; 88(13): e0069822, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35695569

RESUMO

Extracellular DNA (eDNA) is an important component of biofilm matrix that serves to maintain biofilm structural integrity, promotes genetic exchange within the biofilm, and provides protection against antimicrobial compounds. Advances in microscopy techniques have provided evidence of the cobweb- or lattice-like structures of eDNA within biofilms from a range of environmental niches. However, methods to reliably assess the abundance and architecture of eDNA remain lacking. This study aimed to address this gap by development of a novel, high-throughput image acquisition and analysis platform for assessment of eDNA networks in situ within biofilms. Utilizing Streptococcus gordonii as the model, the capacity for this imaging system to reliably detect eDNA networks and monitor changes in abundance and architecture (e.g., strand length and branch number) was verified. Evidence was provided of a synergy between glucans and eDNA matrices, while it was revealed that surface-bound nuclease SsnA could modify these eDNA structures under conditions permissive for enzymatic activity. Moreover, cross talk between the competence and hexaheptapeptide permease systems was shown to regulate eDNA release by S. gordonii. This novel imaging system can be applied across the wider field of biofilm research, with potential to significantly advance interrogation of the mechanisms by which the eDNA network architecture develops, how it can influence biofilm properties, and how it may be targeted for therapeutic benefit. IMPORTANCE Extracellular DNA (eDNA) is critical for maintaining the structural integrity of many microbial biofilms, making it an attractive target for the management of biofilms. However, our knowledge and targeting of eDNA are currently hindered by a lack of tools for the quantitative assessment of eDNA networks within biofilms. Here, we demonstrate use of a novel image acquisition and analysis platform with the capacity to reliably monitor the abundance and architecture of eDNA networks. Application of this tool to Streptococcus gordonii biofilms has provided new insights into how eDNA networks are stabilized within the biofilm and the pathways that can regulate eDNA release. This highlights how exploitation of this novel imaging system across the wider field of biofilm research has potential to significantly advance interrogation of the mechanisms by which the eDNA network architecture develops, how it can influence biofilm properties, and how it may be targeted for therapeutic benefit.


Assuntos
Biofilmes , Streptococcus gordonii , DNA , DNA Bacteriano/genética , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Streptococcus gordonii/fisiologia
5.
Front Oral Health ; 2: 640129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047995

RESUMO

Dental plaque is the key etiological agent in caries formation and the development of the prevalent chronic oral inflammatory disease, periodontitis. The dental plaque biofilm comprises a diverse range of microbial species encased within a rich extracellular matrix, of which extracellular DNA (eDNA) has been identified as an important component. The molecular mechanisms of eDNA release and the structure of eDNA have yet to be fully characterized. Nonetheless, key functions that have been proposed for eDNA include maintaining biofilm structural integrity, initiating adhesion to dental surfaces, acting as a nutrient source, and facilitating horizontal gene transfer. Thus, eDNA is a potential therapeutic target for the management of oral disease-associated biofilm. This review aims to summarize advances in the understanding of the mechanisms of eDNA release from oral microorganisms and in the methods of eDNA detection and quantification within oral biofilms.

6.
J Biophotonics ; 12(6): e201800411, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30701682

RESUMO

OBJECTIVE: Photobiomodulation (PBM) is the application of light to promote tissue healing. Current indications suggest PBM induces its beneficial effects in vivo through upregulation of mitochondrial activity. However, how mitochondrial content influences such PBM responses have yet to be evaluated. Hence, the current study assessed the biological response of cells to PBM with varying mitochondrial contents. METHODS: DNA was isolated from myoblasts and myotubes (differentiated myoblasts), and mitochondrial DNA (mtDNA) was amplified and quantified using a microplate assay. Cells were seeded in 96-wellplates, incubated overnight and subsequently irradiated using a light-emitting diode array (400, 450, 525, 660, 740, 810, 830 and white light, 24 mW/cm2 , 30-240 seconds, 0.72-5.76J/cm2 ). The effects of PBM on markers of mitochondrial activity including reactive-oxygen-species and real-time mitochondrial respiration (Seahorse XFe96) assays were assessed 8 hours post-irradiation. Datasets were analysed using general linear model followed by one-way analysis of variance (and post hoc-Tukey tests); P = 0.05). RESULTS: Myotubes exhibited mtDNA levels 86% greater than myoblasts (P < 0.001). Irradiation of myotubes at 400, 450 or 810 nm induced 53%, 29% and 47% increases (relative to non-irradiated control) in maximal respiratory rates, respectively (P < 0.001). Conversely, irradiation of myoblasts at 400 or 450 nm had no significant effect on maximal respiratory rates. CONCLUSION: This study suggests that mitochondrial content may influence cellular responses to PBM and as such explain the variability of PBM responses seen in the literature.


Assuntos
Terapia com Luz de Baixa Intensidade , Mitocôndrias/efeitos da radiação , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia , Animais , Linhagem Celular , Camundongos , Mitocôndrias/metabolismo , Tamanho Mitocondrial/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA