Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(27): 12641-12650, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920333

RESUMO

Metal halide perovskites with a two-dimensional structure are utilized in photovoltaics and optoelectronics. High-crystallinity CsSn2Br5 specimens have been synthesized via ball milling. Differential scanning calorimetry curves show melting at 553 K (endothermic) and recrystallization at 516 K (exothermic). Structural analysis using synchrotron X-ray diffraction data, collected from 100 to 373 K, allows for the determination of Debye model parameters. This analysis provides insights into the relative Cs-Br and Sn-Br chemical bonds within the tetragonal structure (space group: I4/mcm), which remains stable throughout the temperature range studied. Combined with neutron data, X-N techniques permit the identification of the Sn2+ lone electron pair (5s2) in the two-dimensional framework, occupying empty space opposite to the four Sn-Br bonds of the pyramidal [SnBr4] coordination polyhedra. Additionally, diffuse reflectance UV-vis spectroscopy unveils an indirect optical gap of approximately ∼3.3 eV, aligning with the calculated value from the B3LYP-DFT method (∼3.2 eV). The material exhibits a positive Seebeck coefficient as high as 6.5 × 104 µV K-1 at 350 K, which evolves down to negative values of -3.0 × 103 µV K-1 at 550 K, surpassing values reported for other halide perovskites. Notably, the thermal conductivity remains exceptionally low, between 0.32 and 0.25 W m-1 K-1.

2.
ACS Appl Electron Mater ; 6(5): 2969-2977, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38828031

RESUMO

Thermoelectric materials offer a promising avenue for energy management, directly converting heat into electrical energy. Among them, AgSbTe2 has gained significant attention and continues to be a subject of research at further improving its thermoelectric performance and expanding its practical applications. This study focuses on Ag-deficient Ag0.7Sb1.12Te2 and Ag0.7Sb1.12Te1.95Se0.05 materials, examining the impact of compositional engineering within the AgSbTe2 thermoelectric system. These materials have been rapidly synthesized using an arc-melting technique, resulting in the production of dense nanostructured pellets. Detailed analysis through scanning electron microscopy (SEM) reveals the presence of a layered nanostructure, which significantly influences the thermoelectric properties of these materials. Synchrotron X-ray diffraction reveals significant changes in the lattice parameters and atomic displacement parameters (ADPs) that suggest a weakening of bond order in the structure. The thermoelectric characterization highlights the enhanced power factor of Ag-deficient materials that, combined with the low glass-like thermal conductivity, results in a significant improvement in the figure of merit, achieving zT values of 1.25 in Ag0.7Sb1.12Te2 and 1.01 in Ag0.7Sb1.12Te1.95Se0.05 at 750 K.

3.
ACS Mater Au ; 4(3): 324-334, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38737123

RESUMO

Among thermoelectric materials, skutterudites are the most prominent candidates in the mid-temperature range applications. In the multiple-filled Sr0.2Yb0.2Co4Sb12 skutterudite, with Sr and Yb as fillers, we have enhanced the thermoelectric performance of CoSb3 through the reduction of lattice thermal conductivity and the optimization of carrier concentration and electrical conductivity. The high-pressure synthesis of the double-filled derivative promotes filling fraction fluctuation. This is observed by high angular resolution synchrotron X-ray diffraction, showing a phase segregation that corresponds to an inhomogeneous distribution of the filler atoms, located at the 2a positions of the cubic space group Im3̅. In addition, scanning transmission electron microscopy (STEM) combined with EELS spectroscopy clearly shows a segregation of Sr atoms from the surface of the grains, which is compatible with the synchrotron X-ray powder diffraction results. Mean square displacement parameters analysis results in Einstein temperatures of ∼94 and ∼67 K for Sr and Yb, respectively, and a Debye temperature of ∼250 K. The strong effect on resonant and disorder scattering yields a significantly lower lattice thermal conductivity of 2.5 W m-1 K-1 at 773 K. Still, good weighed-mobility values were obtained, with high filling fraction of the Yb and Sr elements. This drives a reduced electrical resistivity of 2.1 × 10-5 Ω m, which leads to a peak zT of 0.26 at 773 K. The analysis and results performed for the synthesized (Sr,Yb)-double filled CoSb3, shed light on skutterudites for potential waste-heat recovery applications.

4.
Inorg Chem ; 63(15): 7007-7018, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38557070

RESUMO

Double perovskite oxides, characterized by their tunable magnetic properties and robust interconnection between the lattice and magnetic degrees of freedom, present an enticing foundation for advanced magnetic refrigeration materials. Herein, we delve into the influence of rare-earth elements on RSrCoFeO6 (R = Sm, Eu) disordered double perovskites by examining their structural, electronic, magnetic, and magnetocaloric properties. Temperature-dependent synchrotron X-ray diffraction analysis confirmed the stability of the orthorhombic phase (Pnma) across a wide temperature range. X-ray photoemission spectroscopy revealed that both Sm and Eu are in the 3+ state, whereas multiple states for Co2+/3+ and Fe3+/4+ are identified. The magnetic investigation and magnetocaloric effect (MCE) analysis brought to light the presence of a long-range antiferromagnetic (AFM) order with a second-order phase transition (SOPT) in both samples. The maximum magnetic entropy change ΔSMmax was approximately 0.9 J/kg K for both samples at applied field 0-7 T, manifesting prominently above Neel temperatures TN ≈ 93 K (Sm) and 84 K (Eu). Nevertheless, different relative cooling powers (RCP) of 112.6 J/kg (Sm) and 95.5 J/kg (Eu) were observed. A detailed analysis of the temperature-dependent lattice parameters shed light on a distinct magnetocaloric effect across the magnetic transition temperature, unveiling an anisotropic thermal expansion [αV = 1.41 × 10-5 K-1 (Sm) and αV = 1.54 × 10-5 K-1 (Eu)] wherein the thermal expansion axial ratio αbSm/αbEu = 0.61 became lower with increasing temperature, which suggests that the Eu sample experiences a greater thermal expansion in the b-axis direction. At the atomic bonding level, the evidence for magnetoelastic coupling around the magnetic transition temperatures TN was found through the anomalies along the average Co/Fe-O bond distance, formal valence, octahedral distortion, as well as an anisotropic lattice expansion.

5.
Nanomaterials (Basel) ; 12(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36364685

RESUMO

AgSbTe2 intermetallic compound is a promising thermoelectric material. It has also been described as necessary to obtain LAST and TAGS alloys, some of the best performing thermoelectrics of the last decades. Due to the random location of Ag and Sb atoms in the crystal structure, the electronic structure is highly influenced by the atomic ordering of these atoms and makes the accurate determination of the Ag/Sb occupancy of paramount importance. We report on the synthesis of polycrystalline AgSbTe2 by arc-melting, yielding nanostructured dense pellets. SEM images show a conspicuous layered nanostructuration, with a layer thickness of 25-30 nm. Neutron powder diffraction data show that AgSbTe2 crystalizes in the cubic Pm-3m space group, with a slight deficiency of Te, probably due to volatilization during the arc-melting process. The transport properties show some anomalies at ~600 K, which can be related to the onset temperature for atomic ordering. The average thermoelectric figure of merit remains around ~0.6 from ~550 up to ~680 K.

6.
Nanoscale ; 14(28): 10067-10074, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35791918

RESUMO

Band structure engineering has a strong beneficial impact on thermoelectric performance, where theoretical methods dominate the investigation of electronic structures. Here, we use angle-resolved photoemission spectroscopy (ARPES) to analyze the electronic structure and report on the thermoelectric transport properties of half-Heusler TiCoSb high-quality single crystals. High degeneracy of the valence bands at the L and Γ band maximum points was observed, which provides a band-convergence scenario for the thermoelectric performance of TiCoSb. Previous efforts have shown how crystallographic defects play an important role in TiCoSb transport properties, while the intrinsic properties remain elusive. Using hard X-ray photoelectron spectroscopy (HAXPES), we discard the presence of interstitial defects that could induce in-gap states near the valence band in our crystals. Contrary to polycrystalline reports, intrinsic TiCoSb exhibits p-type transport, albeit defects still affect the carrier concentration. In two initially identical p-type TiCoSb crystal batches, distinct metallic and semiconductive behaviors were found owing to defects not noticeable by elemental analysis. A varying Seebeck effective mass is consistent with the change at the Fermi level within this band convergence picture. This report tackles the direct investigation of the electronic structure of TiCoSb and reveals new insights and the strong impact of point defects on the optimization of thermoelectric properties.

8.
Dalton Trans ; 51(6): 2278-2286, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35040857

RESUMO

The crystal structure of LuNiO3 perovskite has been examined below RT and across TN = 125 K by neutron powder diffraction. In this temperature region (2-298 K), well below the metal-insulator transition this oxide exhibits at TMI = 599 K, this material is insulating and characterized by a partial charge disproportionation of the Ni valence. In the perovskite structure, defined in the monoclinic P21/n space group, there are two inequivalent Ni sites located in alternating octahedra of different sizes. The structural analysis with high-resolution techniques (λ = 1.594 Å) unveils a subtle increase of the charge disproportionation as temperature decreases, reaching δeff = 0.34 at 2 K. The magnetic structure has been investigated from low-T NPD patterns collected with a larger wavelength (λ = 2.52 Å). Magnetic peaks are observed below TN; they can be indexed with a propagation vector k = (½, 0, ½), as previously observed in other RNiO3 perovskites for the Ni sublattice. Among the three possible solutions for the magnetic structure, the first one is discarded since it would correspond to a full charge ordering (Ni2+ + Ni4+), with magnetic moments only on Ni2+ ions, not compatible with the structural findings assessing a partial charge disproportionation. The best agreement is found for a non-collinear model with two different moments in Ni1 and Ni2 sites, 1.4(1) µB, and m 0.7(1) µB at 2 K, the ordered magnetic moments lying on the a-c plane. This is similar to that found for YNiO3. In complement, the magnetic and thermal properties of LuNiO3 have been investigated. AC susceptibility curves exhibit a clear peak centered at TN = 125 K, corresponding to the establishment of the Ni antiferromagnetic structure. This is corroborated by DC susceptibility and specific heat measurements. Magnetization vs. field measurements confirm that the system is antiferromagnetic down to 2 K, without any further magnetic change. This linear behavior is also observed in the paramagnetic regime (T > TN).

9.
Materials (Basel) ; 16(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614710

RESUMO

In this work, Gd-filled skutterudite GdxCo4Sb12 was prepared using one step method under high pressure in a piston-cylinder-based press at 3.5 GPa and moderate temperature of 800 °C. A detailed structural characterization was performed using synchrotron X-ray diffraction (SXRD), revealing a filling fraction of x = 0.033(2) and an average bond length of 3.3499(3) Å. The lattice thermal expansion accessed via temperature-dependent SXRD led to a precise determination of a Debye temperature of 322(3) K, from the fitting of the unit-cell volume expansion using the second order Grüneisen approximation. This parameter, when evaluated through the mean square displacements of Co and Sb, displayed a value of 265(2) K, meaning that the application of the harmonic Debye theory underestimates the Debye temperature in skutterudites. Regarding the Gd atom, its intrinsic disorder value was ~5× and ~25× higher than those of the Co and Sb, respectively, denoting that Gd has a strong rattling behavior with an Einstein temperature of θE = 67(2) K. As a result, an ultra-low thermal conductivity of 0.89 W/m·K at 773 K was obtained, leading to a thermoelectric efficiency zT of 0.5 at 673 K.

10.
Dalton Trans ; 50(20): 7085-7093, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33949539

RESUMO

Rare-earth nickelates RNiO3 (R = Y, LaLu) are electron-correlated perovskite materials where the interplay between charge and spin order results in a rich phase diagram, evolving from antiferromagnetic insulators to paramagnetic metals. They are well-known to undergo metal-insulator (MI) transitions as a function of temperature and the size of the rare-earth ion. For intermediate-size Eu3+ and Gd3+ ions, the MI transitions are described to happen at TMI = 463 K and 511 K, respectively. We have investigated their structural evolution across TMI with the excellent angular resolution of synchrotron X-ray diffraction, using high-crystalline quality samples prepared at elevated hydrostatic pressures. Unlike YNiO3, synthesized and measured under the same conditions, exhibiting a characteristic monoclinic phase (space group P21/n) in the insulating regime (below TMI), the present EuNiO3 and GdNiO3 samples do not exhibit such a symmetry, but their crystal structures can be defined in an orthorhombic superstructure of perovskite (space group Pbnm) in all the temperature interval, between 100 and 623 K for Eu and 298 K and 650 K for Gd. Nevertheless, an abrupt evolution of the unit-cell parameters is observed upon metallization above TMI. A prior report of a charge disproportionation effect by Mössbauer spectroscopy on Fe-doped perovskite samples seems to suggest that the distribution of two distinct Ni sites must not exhibit the required long-range ordering to be effectively detected by diffraction methods. An abrupt contraction of the b parameter of EuNiO3 in the 175-200 K range, coincident with the onset of antiferromagnetic ordering, suggests a magnetoelastic coupling, not described so far in rare-earth nickelates. The magnetic susceptibility is dominated by the paramagnetic signal of the rare-earth ions; however, the AC susceptibility curves yield a Néel temperature corresponding to the antiferromagnetic ordering of the Ni moments of TN = 197 K for EuNiO3, corroborated by specific heat measurements. For GdNiO3, a χT vs. T plot presents a clear change in the slope at TN = 187 K, also consistent with specific heat data. Magnetization measurements at 2 K under large fields up to 14 T show a complete saturation of the magnetic moments with a rather high ordered moment of 7.5µB per f.u.

11.
Materials (Basel) ; 14(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924529

RESUMO

In this review, we describe different families of metastable materials, some of them with relevant technological applications, which can be stabilized at moderate pressures 2-3.5 GPa in a piston-cylinder press. The synthesis of some of these systems had been previously reported under higher hydrostatic pressures (6-10 GPa), but can be accessed under milder conditions in combination with reactive precursors prepared by soft-chemistry techniques. These systems include perovskites with transition metals in unusual oxidation states (e.g., RNiO3 with Ni3+, R = rare earths); double perovskites such as RCu3Mn4O12 with Jahn-Teller Cu2+ ions at A sites, pyrochlores derived from Tl2Mn2O7 with colossal magnetoresistance, pnictide skutterudites MxCo4Sb12 (M = La, Yb, Ce, Sr, K) with thermoelectric properties, or metal hydrides Mg2MHx (M = Fe, Co, Ni) and AMgH3 (A: alkali metals) with applications in hydrogen storage. The availability of substantial amounts of sample (0.5-1.5 g) allows a complete characterization of the properties of interest, including magnetic, transport, thermoelectric properties and so on, and the structural characterization by neutron or synchrotron X-ray diffraction techniques.

12.
Inorg Chem ; 60(10): 7413-7421, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33900757

RESUMO

Skutterudite-type compounds based on □Co4Sb12 pnictide are promising for thermoelectric application due to their good Seebeck values and high carrier mobility. Filling the 8a voids (in the cubic space group Im3̅) with different elements (alkali, alkali earth, and rare earth) helps to reduce the thermal conductivity and thus increases the thermoelectric performance. A systematic characterization by synchrotron X-ray powder diffraction of different M-filled Co4Sb12 (M = K, Sr, La, Ce, and Yb) skutterudites was carried out under high pressure in the range ∼0-12 GPa. The isothermal equations of state (EOS) were obtained in this pressure range and the Bulk moduli (B0) were calculated for all the filled skutterudites, yielding unexpected results. A lattice expansion due to the filler elements fails in the description of the Bulk moduli. Topochemical studies of the filler site environment exhibited a slight disturbance and an increased ionic character when the filler is incorporated. The mechanical properties by means of Bulk moduli resulted in being sensitive to the presence of filler atoms inside the skutterudite voids, being affected by the covalent/ionic exchange of the Co-Sb and Sb-Sb bonds.

13.
Inorg Chem ; 59(20): 14932-14943, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33006896

RESUMO

Black phosphorus (BP) allotrope has an orthorhombic crystal structure with a narrow bandgap of 0.35 eV. This material is promising for 2D technology since it can be exfoliated down to one single layer: the well-known phosphorene. In this work, bulk BP was synthesized under high-pressure conditions at high temperatures. A detailed structural investigation using neutron and synchrotron X-ray diffraction revealed the occurrence of anisotropic strain effects on the BP lattice; the combination of both sets of diffraction data allowed visualization of the lone electron pair 3s2. Temperature-dependent neutron diffraction data collected at low temperature showed that the a axis (zigzag) exhibits a quasi-temperature-independent thermal expansion in the temperature interval from 20 up to 150 K. These results may be a key to address the anomalous behavior in electrical resistivity near 150 K. Thermoelectric properties were also provided; low thermal conductivity from 14 down to 6 Wm-1K-1 in the range 323-673 K was recorded in our polycrystalline BP, which is below the reported values for single-crystals in literature.

14.
Sci Rep ; 10(1): 11228, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641694

RESUMO

Among the hybrid organic-inorganic perovskites MAPbX3 (MA: methyl-ammonium CH3-NH3+, X = halogen), the triiodide specimen (MAPbI3) is still the material of choice for solar energy applications. Although it is able to absorb light above its 1.6 eV bandgap, its poor stability in humid air atmosphere has been a major drawback for its use in solar cells. However, we discovered that this perovskite can be prepared by ball milling in a straightforward way, yielding specimens with a superior stability. This fact allowed us to take atomic-resolution STEM images for the first time, with sufficient quality to unveil microscopic aspects of this material. We demonstrated full Iodine content, which might be related to the enhanced stability, in a more compact PbI6 framework with reduced unit-cell volume. A structural investigation from neutron powder diffraction (NPD) data of an undeuterated specimen was essential to determine the configuration of the organic MA unit in the 100-298 K temperature range. A phase transition is identified, from the tetragonal structure observed at RT (space group I4/mcm) to an orthorhombic (space group Pnma) phase where the methyl-ammonium organic units are fully localized. Our NPD data reveal that the MA changes are gradual and start before reaching the phase transition. Optoelectronic measurements yield a photocurrent peak at an illumination wavelength of 820 nm, which is redshifted by 30 nm with respect to previously reported measurements on MAPbI3 perovskites synthesized by crystallization from organic solvents.

15.
ACS Omega ; 5(11): 5931-5938, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32226873

RESUMO

We present a mechanochemical procedure, with solvent-free, green-chemistry credentials, to grow all-inorganic CsPbBr3 perovskite. The crystal structure of this perovskite and its correlations with the physicochemical properties have been studied. Synchrotron X-ray diffraction (SXRD) and neutron powder diffraction (NPD) allowed us to follow the crystallographic behavior from 4 to 773 K. Unreported features like the observed negative thermal expansion of the b unit-cell parameter stem from octahedral distortions in the 4-100 K temperature range. The mechanochemical synthesis was designed to reduce the impact energy during the milling process, leading to a defect-free, well-crystallized sample characterized by a minimum unit-cell volume and octahedral tilting angles in the low-temperature orthorhombic perovskite framework, defined in the Pbnm space group. The UV-vis diffuse reflectance spectrum shows a reduced band gap of 2.22(3) eV, and the photocurrent characterization in a photodetector reveals excellent properties with potential applications of this material in optoelectronic devices.

16.
Materials (Basel) ; 12(22)2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752118

RESUMO

PbTe-based alloys have the best thermoelectric properties for intermediate temperature applications (500-900 K). We report on the preparation of pristine PbTe and two doped derivatives (Pb0.99Sb0.01Te and Ag0.05Sb0.05Pb0.9Te, so-called LAST18) by a fast arc-melting technique, yielding nanostructured polycrystalline pellets. XRD and neutron powder diffraction (NPD) data assessed the a slight Te deficiency for PbTe, also yielding trends on the displacement factors of the 4a and 4b sites of the cubic Fm-3m space group. Interestingly, SEM analysis shows the conspicuous formation of layers assembled as stackings of nano-sheets, with 20-30 nm thickness. TEM analysis shows intra-sheet nanostructuration on the 50 nm scale in the form of polycrystalline grains. Large numbers of grain boundaries are created by this nanostructuration and this may contribute to reduce the thermal conductivity to a record-low value of 1.6 Wm-1K-1 at room temperature. In LAST18, a positive Seebeck coefficient up to 600 µV K-1 at 450 K was observed, contributing further towards improving potential thermoelectric efficiency.

17.
Inorg Chem ; 58(17): 11828-11835, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31432670

RESUMO

RNiO3 (R = rare-earth element) perovskite materials are well-known to exhibit characteristic metal-insulator transitions. The structural distortion increases as the R member becomes smaller along the series. For SmNiO3, a high-hydrostatic-pressure preparation procedure, yielding samples with much enhanced crystalline quality, combined with the extremely high angular resolution of synchrotron X-ray diffraction (XRD) allowed us to identify a monoclinic phase in the insulating regime (below the metal-insulator transition temperature (TMI) of 127 °C), defined in the space group P21/n. This monoclinic symmetry had not been demonstrated directly using nonresonant XRD or neutron diffraction. This has important repercussions on the electronic nature of this material since the monoclinic structure contains two inequivalent Ni positions, implying a charge disproportionation phenomenon. In the metallic regime (above TMI), the standard orthorhombic Pbnm structure is observed. Therefore, there is a coupled structural and electronic transition, as happens for the very small rare-earth compounds of the RNiO3 perovskite series. Across TMI there is a dramatic rearrangement of the lattice parameters, degree of tilting, and distortion of the NiO6 octahedra, showing the convergence of the Ni-O bond lengths upon entering the metallic phase. Brown's valence analysis of the different elements agrees with other reported values in the literature, matching with bond and charge disproportionation models. By magnetization measurements a Néel temperature (TN) corresponding to the antiferromagnetic ordering of the Ni moments is identified at TN= 220 K, whereas Sm moments experience long-range ordering below 36 K.

18.
Nanoscale Res Lett ; 12(1): 47, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28097598

RESUMO

In competitive thermoelectric devices for energy conversion and generation, high-efficiency materials of both n-type and p-type are required. For this, Bi2Te3-based alloys have the best thermoelectric properties in room temperature applications. Partial replacement of tellurium by selenium is expected to introduce new donor states in the band gap, which would alter electrical conductivity and thermopower. We report on the preparation of n-type Bi2(Te1-xSex)3 solid solutions by a straightforward arc-melting technique, yielding nanostructured polycrystalline pellets. X-ray and neutron powder diffraction was used to assess Se inclusion, also indicating that the interactions between quintuple layers constituting this material are weakened upon Se doping, while the covalency of intralayer bonds is augmented. Moreover, scanning electron microscopy shows large surfaces perpendicular to the c crystallographic axis assembled as stacked sheets. Grain boundaries related to this 2D nanostructuration affect the thermal conductivity reducing it below 0.8 Wm-1K-1 at room temperature. Furthermore, Se doping increases the absolute Seebeck coefficient up to -140 µV K-1 at 400 K, which is also beneficial for improved thermoelectric efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA