Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 10(4): 1992-2003, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30351911

RESUMO

In view of the clinical need for new antiseizure drugs (ASDs) with novel modes of action, we used a zebrafish seizure model to screen the anticonvulsant activity of medicinal plants used by traditional healers in the Congo for the treatment of epilepsy, and identified a crude plant extract that inhibited pentylenetetrazol (PTZ)-induced seizures in zebrafish larvae. Zebrafish bioassay-guided fractionation of this anticonvulsant Fabaceae species, Indigofera arrecta, identified indirubin, a compound with known inhibitory activity of glycogen synthase kinase (GSK)-3, as the bioactive component. Indirubin, as well as the more potent and selective GSK-3 inhibitor 6-bromoindirubin-3'-oxime (BIO-acetoxime) were tested in zebrafish and rodent seizure assays. Both compounds revealed anticonvulsant activity in PTZ-treated zebrafish larvae, with electroencephalographic recordings revealing reduction of epileptiform discharges. Both indirubin and BIO-acetoxime also showed anticonvulsant activity in the pilocarpine rat model for limbic seizures and in the 6-Hz refractory seizure mouse model. Most interestingly, BIO-acetoxime also exhibited anticonvulsant actions in 6-Hz fully kindled mice. Our findings thus provide the first evidence for anticonvulsant activity of GSK-3 inhibition, thereby implicating GSK-3 as a potential therapeutic entry point for epilepsy. Our results also support the use of zebrafish bioassay-guided fractionation of antiepileptic medicinal plant extracts as an effective strategy for the discovery of new ASDs with novel mechanisms of action.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/enzimologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Anticonvulsivantes/farmacologia , Indóis/farmacologia , Indóis/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Peixe-Zebra
2.
PLoS One ; 8(1): e54166, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23342097

RESUMO

Zebrafish have recently emerged as an attractive in vivo model for epilepsy. Seven-day-old zebrafish larvae exposed to the GABA(A) antagonist pentylenetetrazol (PTZ) exhibit increased locomotor activity, seizure-like behavior, and epileptiform electrographic activity. A previous study showed that 12 out of 13 antiepileptic drugs (AEDs) suppressed PTZ-mediated increases in larval movement, indicating the potential utility of zebrafish as a high-throughput in vivo model for AED discovery. However, a question remained as to whether an AED-induced decrease in locomotion is truly indicative of anticonvulsant activity, as some drugs may impair larval movement through other mechanisms such as general toxicity or sedation. We therefore carried out a study in PTZ-treated zebrafish larvae, to directly compare the ability of AEDs to inhibit seizure-like behavioral manifestations with their capacity to suppress epileptiform electrographic activity. We re-tested the 13 AEDs of which 12 were previously reported to inhibit convulsions in the larval movement tracking assay, administering concentrations that did not, on their own, impair locomotion. In parallel, we carried out open-field recordings on larval brains after treatment with each AED. For the majority of AEDs we obtained the same response in both the behavioral and electrographic assays. Overall our data correlate well with those reported in the literature for acute rodent PTZ tests, indicating that the larval zebrafish brain is more discriminatory than previously thought in its response to AEDs with different modes of action. Our results underscore the validity of using the zebrafish larval locomotor assay as a rapid first-pass screening tool in assessing the anticonvulsant and/or proconvulsant activity of compounds, but also highlight the importance of performing adequate validation when using in vivo models.


Assuntos
Anticonvulsivantes/uso terapêutico , Locomoção/efeitos dos fármacos , Pentilenotetrazol/farmacologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Animais , Peixe-Zebra
3.
Epilepsy Behav ; 24(1): 14-22, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22483646

RESUMO

Turmeric, obtained from the rhizomes of Curcuma longa, is used in South Asia as a traditional medicine for the treatment of epilepsy. To date, in vivo studies on the anticonvulsant activity of turmeric have focused on its principal curcuminoid, curcumin. However, poor absorption and rapid metabolism have limited the therapeutic application of curcumin in humans. To explore the therapeutic potential of turmeric for epilepsy further, we analyzed its anticonvulsant activity in a larval zebrafish seizure assay. Initial experiments revealed that the anticonvulsant activity of turmeric in zebrafish larvae cannot be explained solely by the effects of curcumin. Zebrafish bioassay-guided fractionation of turmeric identified bisabolene sesquiterpenoids as additional anticonvulsants that inhibit PTZ-induced seizures in both zebrafish and mice. Here, we present the first report of the anticonvulsant properties of bisabolene sesquiterpenoids and provide evidence which warrants further investigation toward the mechanistic understanding of their neuromodulatory activity.


Assuntos
Anticonvulsivantes/uso terapêutico , Curcuma/química , Fitoterapia/métodos , Extratos Vegetais/uso terapêutico , Convulsões/tratamento farmacológico , Análise de Variância , Animais , Animais Geneticamente Modificados , Cromatografia Líquida de Alta Pressão , Convulsivantes/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Eletroencefalografia , Proteínas de Fluorescência Verde/genética , Espectroscopia de Ressonância Magnética , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Movimento/efeitos dos fármacos , Pentilenotetrazol/toxicidade , Extratos Vegetais/química , Convulsões/induzido quimicamente , Ácido Valproico/uso terapêutico , Peixe-Zebra
4.
Epilepsy Behav ; 22(3): 450-60, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21962757

RESUMO

In the past, antidepressants have been thought to possess proconvulsant properties. This assumption remains controversial, however, because anticonvulsant effects have been attributed to certain antidepressants. To date, it remains unclear which antidepressants can be used for the treatment of patients with epilepsy with depression. The present study was designed to determine the anticonvulsant and/or proconvulsant effects of three antidepressants (citalopram, reboxetine, bupropion) against pilocarpine- and pentylenetetrazole-induced acute seizures in larval zebrafish and mice. In zebrafish, all antidepressants were anticonvulsant in the pentylenetetrazole model. In addition, citalopram was anticonvulsant in the zebrafish pilocarpine model, whereas reboxetine and bupropion were without significant effect. In mice all three antidepressants increased some thresholds for pentylenetetrazole-induced convulsive-like behaviors at varying doses, whereas thresholds for pilocarpine-induced convulsive-like behaviors were generally lowered, particularly at the highest doses tested. In general we conclude that the convulsant liability of antidepressants is model and concentration dependent.


Assuntos
Antidepressivos/uso terapêutico , Convulsivantes/toxicidade , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Análise de Variância , Animais , Animais Geneticamente Modificados , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Pentilenotetrazol/toxicidade , Pilocarpina/toxicidade , Convulsões/mortalidade , Convulsões/fisiopatologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA