Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 147: 106130, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774440

RESUMO

Incomplete glottal closure is a laryngeal configuration wherein the glottis is not fully obstructed prior to phonation. It has been linked to inefficient voice production and voice disorders. Various incomplete glottal closure patterns can arise and the mechanisms driving them are not well understood. In this work, we introduce an Euler-Bernoulli composite beam vocal fold (VF) model that produces qualitatively similar incomplete glottal closure patterns as those observed in experimental and high-fidelity numerical studies, thus offering insights into the potential underlying physical mechanisms. Refined physiological insights are pursued by incorporating the beam model into a VF posturing model that embeds the five intrinsic laryngeal muscles. Analysis of the combined model shows that co-activating the lateral cricoarytenoid (LCA) and interarytenoid (IA) muscles without activating the thyroarytenoid (TA) muscle results in a bowed (convex) VF geometry with closure at the posterior margin only; this is primarily attributed to the reactive moments at the anterior VF margin. This bowed pattern can also arise during VF compression (due to extrinsic laryngeal muscle activation for example), wherein the internal moment induced passively by the TA muscle tissue is the predominant mechanism. On the other hand, activating the TA muscle without incorporating other adductory muscles results in anterior and mid-membranous glottal closure, a concave VF geometry, and a posterior glottal opening driven by internal moments induced by TA muscle activation. In the case of initial full glottal closure, the posterior cricoarytenoid (PCA) muscle activation cancels the adductory effects of the LCA and IA muscles, resulting in a concave VF geometry and posterior glottal opening. Furthermore, certain maneuvers involving co-activation of all adductory muscles result in an hourglass glottal shape due to a reactive moment at the anterior VF margin and moderate internal moment induced by TA muscle activation. These findings have implications regarding potential laryngeal maneuvers in patients with voice disorders involving imbalances or excessive tension in the laryngeal muscles such as muscle tension dysphonia.


Assuntos
Distúrbios da Voz , Voz , Humanos , Prega Vocal/fisiologia , Glote/fisiologia , Voz/fisiologia , Fonação/fisiologia
2.
ArXiv ; 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37461411

RESUMO

Incomplete glottal closure is a laryngeal configuration wherein the glottis is not fully obstructed prior to phonation. In this work, we introduce an Euler-Bernoulli composite beam vocal fold (VF) model that produces qualitatively similar incomplete glottal closure patterns as those observed in experimental and high-fidelity numerical studies, thus offering insights in to the potential underlying physical mechanisms. Refined physiological insights are pursued by incorporating the beam model into a VF posturing model that embeds the five intrinsic laryngeal muscles. Analysis of the combined model shows that co-activating the lateral cricoarytenoid (LCA) and interarytenoid (IA) muscles without activating the thyroarytenoid (TA) muscle results in a bowed (convex) VF geometry with closure at the posterior margin only; this is primarily attributed to the reactive moments at the anterior VF margin. This bowed pattern can also arise during VF compression (due to extrinsic laryngeal muscle activation for example), wherein the internal moment induced passively by the TA muscle tissue is the predominant mechanism. On the other hand, activating the TA muscle without incorporating other adductory muscles results in anterior and mid-membranous glottal closure, a concave VF geometry, and a posterior glottal opening driven by internal moments induced by TA muscle activation. In the case of initial full glottal closure, the posterior cricoarytenoid (PCA) muscle activation cancels the adductory effects of the LCA and IA muscles, resulting in a concave VF geometry and posterior glottal opening. Furthermore, certain maneuvers involving co-activation of all adductory muscles result in an hourglass glottal shape due to a reactive moment at the anterior VF margin and moderate internal moment induced by TA muscle activation.

3.
Biomech Model Mechanobiol ; 22(4): 1365-1378, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37169957

RESUMO

Neck muscles play important roles in various physiological tasks, including swallowing, head stabilization, and phonation. The mechanisms by which neck muscles influence phonation are not well understood, with conflicting reports on the change in fundamental frequency for ostensibly the same neck muscle activation scenarios. In this work, we introduce a reduced-order muscle-controlled vocal fold model, comprising both intrinsic muscle control and extrinsic muscle effects. The model predicts that when the neck muscles pull the thyroid cartilage in the superior-anterior direction (with a sufficiently large anterior component), inferior direction, or inferior-anterior direction, tension in the vocal folds increases, leading to fundamental frequency rise during sustained phonation. On the other hand, pulling in the superior direction, superior-posterior direction, or inferior-posterior direction (with a sufficiently large posterior component) tends to decrease vocal fold tension and phonation fundamental frequency. Varying the pulling force location alters the posture and phonation biomechanics, depending on the force direction. These findings suggest potential roles of particular neck muscles in modulating phonation fundamental frequency, with implications for vocal hyperfunction.


Assuntos
Músculos Laríngeos , Fonação , Músculos Laríngeos/fisiologia , Fonação/fisiologia , Prega Vocal/fisiologia , Fenômenos Biomecânicos , Estimulação Elétrica
4.
Biomech Model Mechanobiol ; 22(1): 339-356, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36370231

RESUMO

Fundamental frequency patterns during phonation onset have received renewed interest due to their promising application in objective classification of normal and pathological voices. However, the associated underlying mechanisms producing the wide array of patterns observed in different phonetic contexts are not yet fully understood. Herein, we employ theoretical and numerical analyses in an effort to elucidate the potential mechanisms driving opposing frequency patterns for initial/isolated vowels versus vowels preceded by voiceless consonants. Utilizing deterministic lumped-mass oscillator models of the vocal folds, we systematically explore the roles of collision and muscle activation in the dynamics of phonation onset. We find that an increasing trend in fundamental frequency, as observed for initial/isolated vowels, arises naturally through a progressive increase in system stiffness as collision intensifies as onset progresses, without the need for time-varying vocal fold tension or changes in aerodynamic loading. In contrast, reduction in cricothyroid muscle activation during onset is required to generate the decrease in fundamental frequency observed for vowels preceded by voiceless consonants. For such phonetic contexts, our analysis shows that the magnitude of reduction in the cricothyroid muscle activation and the activation level of the thyroarytenoid muscle are potential factors underlying observed differences in (relative) fundamental frequency between speakers with healthy and hyperfunctional voices. This work highlights the roles of sometimes competing laryngeal factors in producing the complex array of observed fundamental frequency patterns during phonation onset.


Assuntos
Fonação , Prega Vocal , Fonação/fisiologia , Prega Vocal/fisiologia , Músculos Laríngeos/fisiologia , Músculos
5.
J Acoust Soc Am ; 151(5): 2987, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35649932

RESUMO

In an effort to mitigate the 2019 novel coronavirus disease pandemic, mask wearing and social distancing have become standard practices. While effective in fighting the spread of the virus, these protective measures have been shown to deteriorate speech perception and sound intensity, which necessitates speaking louder to compensate. The goal of this paper is to investigate via numerical simulations how compensating for mask wearing and social distancing affects measures associated with vocal health. A three-mass body-cover model of the vocal folds (VFs) coupled with the sub- and supraglottal acoustic tracts is modified to incorporate mask and distance dependent acoustic pressure models. The results indicate that sustaining target levels of intelligibility and/or sound intensity while using these protective measures may necessitate increased subglottal pressure, leading to higher VF collision and, thus, potentially inducing a state of vocal hyperfunction, a progenitor to voice pathologies.


Assuntos
COVID-19 , Voz , COVID-19/prevenção & controle , Humanos , Fonação , Vibração , Prega Vocal
6.
J Acoust Soc Am ; 149(5): 3654, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34241131

RESUMO

Relative fundamental frequency (RFF) is a promising assessment technique for vocal pathologies. Herein, we explore the underlying laryngeal factors dictating RFF behaviours during phonation offset. To gain physical insights, we analyze a simple impact oscillator model and follow that with a numerical study using the well-established body-cover model of the vocal folds (VFs). Study of the impact oscillator suggests that the observed decrease in fundamental frequency during offset is due, at least in part, to the increase in the neutral gap between the VFs during abduction and the concomitant decrease in collision forces. Moreover, the impact oscillator elucidates a correlation between sharper drops in RFF and increased stiffness of the VFs, supporting experimental RFF studies. The body-cover model study further emphasizes the correlation between the drops in RFF and collision forces. The numerical analysis also illustrates the sensitivity of RFF to abduction initiation time relative to the phase of the phonation cycle, and the abduction period length. In addition, the numerical simulations display the potential role of the cricothyroid muscle to mitigate the RFF reduction. Last, simplified models of phonotraumatic vocal hyperfunction are explored, demonstrating that the observed sharper drops in RFF are associated with increased pre-offset collision forces.


Assuntos
Fonação , Acústica da Fala , Músculos Laríngeos , Física , Prega Vocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA