Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(42): 15031-15045, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37812767

RESUMO

Amphiphilic gold core nanoparticles (AmNPs) striped with hydrophilic 11-mercapto-1-undecanesulfonate (MUS) and hydrophobic 1-octanethiol (OT) ligands are promising candidates for drug carriers that passively and nondisruptively enter cells. Yet, how they interact with cellular membranes is still only partially understood. Herein, we use electrophysiology and imaging to carefully assess changes in droplet interface bilayer lipid membranes (DIBs) incurred by striped AmNPs added via microinjection. We find that AmNPs spontaneously reduce the steady-state specific capacitance and contact angle of phosphatidylcholine DIBs by amounts dependent on the final NP concentration. These reductions, which are greater for NPs with a higher % OT ligands and membranes containing unsaturated lipids but negligible for MUS-only-coated NPs, reveal that AmNPs passively embed in the interior of the bilayer where they increase membrane thickness and lateral tension through disruption of lipid packing. These results demonstrate the enhanced evaluation of nano-bio interactions possible via electrophysiology and imaging of DIBs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ouro/química , Nanopartículas Metálicas/química , Membrana Celular , Bicamadas Lipídicas/química , Nanopartículas/química , Eletrofisiologia
2.
Int J Pharm ; 606: 120899, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34324990

RESUMO

We successfully prepared and characterized a hyaluronic acid- and folic acid-based hydrogel for the delivery of cisplatin (GEL-CIS) with the aim to induce specific and efficient incorporation of CIS into ovarian cancer (OC) cells, improve its antineoplastic effect and avoid CIS-resistance. The slow and controlled release of the drug from the polymeric network and its swelling degree at physiologic pH suggested its suitability for CIS delivery in OC. We compared here the effects of pure CIS to that of GEL-CIS on human OC cell lines, either wild type or CIS-resistant, in basal conditions and in the presence of macrophage-derived conditioned medium, mimicking the action of tumor-associated macrophages in vivo. GEL-CIS inhibited OC cell growth and migration more efficiently than pure CIS and modulated the expression of proteins involved in the Epithelial Mesenchymal Transition, a process playing a key role in OC metastatic spread and resistance to CIS.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Feminino , Ácido Fólico/farmacologia , Humanos , Ácido Hialurônico/farmacologia , Hidrogéis/farmacologia , Neoplasias Ovarianas/tratamento farmacológico
3.
Materials (Basel) ; 14(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917404

RESUMO

In the last years, neurological diseases have resulted in a global health issue, representing the first cause of disability worldwide. Current therapeutic approaches against neurological disorders include oral, topical, or intravenous administration of drugs and more invasive techniques such as surgery and brain implants. Unfortunately, at present, there are no fully effective treatments against neurodegenerative diseases, because they are not associated with a regeneration of the neural tissue but rather act on slowing the neurodegenerative process. The main limitation of central nervous system therapeutics is related to their delivery to the nervous system in therapeutic quantities due to the presence of the blood-brain barrier. In this regard, recently, the intranasal route has emerged as a promising administration site for central nervous system therapeutics since it provides a direct connection to the central nervous system, avoiding the passage through the blood-brain barrier, consequently increasing drug cerebral bioavailability. This review provides an overview of the nose-to-brain route: first, we summarize the anatomy of this route, focusing on the neural mechanisms responsible for the delivery of central nervous system therapeutics to the brain, and then we discuss the recent advances made on the design of intranasal drug delivery systems of central nervous system therapeutics to the brain, focusing in particular on stimuli-responsive hydrogels.

4.
Pharmacol Res Perspect ; 9(1): e00691, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33378565

RESUMO

Coronaviruses represent global health threat. In this century, they have already caused two epidemics and one serious pandemic. Although, at present, there are no approved drugs and therapies for the treatment and prevention of human coronaviruses, several agents, FDA-approved, and preclinical, have shown in vitro and/or in vivo antiviral activity. An in-depth analysis of the current situation leads to the identification of several potential drugs that could have an impact on the fight against coronaviruses infections. In this review, we discuss the virology of human coronaviruses highlighting the main biological targets and summarize the current state-of-the-art of possible therapeutic options to inhibit coronaviruses infections. We mostly focus on FDA-approved and preclinical drugs targeting viral conserved elements.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Infecções por Coronavirus/metabolismo , Coronavirus/metabolismo , Dipeptidil Peptidase 4/metabolismo , Síndrome Respiratória Aguda Grave/metabolismo , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/metabolismo , Antivirais/administração & dosagem , Antivirais/metabolismo , Azóis/administração & dosagem , Azóis/metabolismo , Coronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/metabolismo , Humanos , Isoindóis , Naftoquinonas/administração & dosagem , Naftoquinonas/metabolismo , Compostos Organosselênicos/administração & dosagem , Compostos Organosselênicos/metabolismo , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Tratamento Farmacológico da COVID-19
5.
Molecules ; 25(15)2020 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-32748846

RESUMO

Psoriasis is one of the most common human skin disorders. Although its pathogenesis is complex and not completely know, the hyperactivation of the immune system seem to have a key role. In this regard, among the most effective systemic therapeutics used in psoriasis, we find cyclosporine, an immunosuppressive medication. However, one of the major problems associated with the use of cyclosporine is the occurrence of systemic side effects such as nephrotoxicity, hypertension, etc. The present work fits in this context and its aim is the design of suitable platforms for cyclosporine topical release in psoriasis treatment. The main objective is to achieve local administration of cyclosporine in order to reduce its systemic absorption and, consequently, its side effects. In order to improve dermal penetration, solid lipid nanoparticles (SLNs) are used as carriers, due to their lipophilicity and occlusive properties, and naringenin and linolenic acid are chosen, due to their properties, as starting materials for SLNs design. In order to have dermatological formulations and further modulate drug release, SLNs are incorporated in several topical vehicles obtaining gels with different degree of lipophilicity. Potential applications for psoriasis treatment were evaluated by considering the encapsulation efficiency, release profiles, in vitro skin permeation, and anti-inflammatory effects.


Assuntos
Ciclosporina/administração & dosagem , Ciclosporina/farmacocinética , Flavanonas/química , Lipídeos/química , Lipídeos/farmacologia , Pele/efeitos dos fármacos , Ácido alfa-Linolênico/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Ciclosporina/química , Portadores de Fármacos , Composição de Medicamentos , Liberação Controlada de Fármacos , Humanos , Lipídeos/administração & dosagem , Estrutura Molecular , Tamanho da Partícula , Absorção Cutânea , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Pharmaceutics ; 11(8)2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31408954

RESUMO

Hyaluronic acid (HA) is a natural, linear, endogenous polysaccharide that plays important physiological and biological roles in the human body. Nowadays, among biopolymers, HA is emerging as an appealing starting material for hydrogels design due to its biocompatibility, native biofunctionality, biodegradability, non-immunogenicity, and versatility. Since HA is not able to form gels alone, chemical modifications, covalent crosslinking, and gelling agents are always needed in order to obtain HA-based hydrogels. Therefore, in the last decade, different strategies for the design of physical and chemical HA hydrogels have been developed, such as click chemistry reactions, enzymatic and disulfide crosslinking, supramolecular assembly via inclusion complexation, and so on. HA-based hydrogels turn out to be versatile platforms, ranging from static to smart and stimuli-responsive systems, and for these reasons, they are widely investigated for biomedical applications like drug delivery, tissue engineering, regenerative medicine, cell therapy, and diagnostics. Furthermore, the overexpression of HA receptors on various tumor cells makes these platforms promising drug delivery systems for targeted cancer therapy. The aim of the present review is to highlight and discuss recent advances made in the last years on the design of chemical and physical HA-based hydrogels and their application for biomedical purposes, in particular, drug delivery. Notable attention is given to HA hydrogel-based drug delivery systems for targeted therapy of cancer and osteoarthritis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA