Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897988

RESUMO

This paper reports on the design, and implementation of piezoelectric-on-silicon MEMS resonators installed within a portable experimental setup for sensing nanoparticles in a laboratory environment. MEMS oscillators with a center frequency of approximately 5.999 MHz are employed for sensing 50 nm size-selected silver nanoparticles generated in the laboratory. The same experimental setup is then assembled to sense indoor particles that are present in the laboratory environment. The challenges associated with particle deposition as a result of assembling the portable experimental setup is highlighted. Furthermore, the MEMS oscillators demonstrate that the total mass of silver nanoparticles deposited onto the MEMS resonator surface using the inertial impaction technique-based experimental setup is approximately 7.993 nanograms. The total indoor particle mass accumulated on the MEMS resonator surface is estimated to be approximately 1.732 nanograms and 26.9 picograms for two different runs. The frequency resolution of the MEMS oscillator is estimated to be approximately 32 ppb and, consequently, the minimum detectable particle mass is approximately 60 femtograms for a 9.2 s integration time.


Assuntos
Nanopartículas Metálicas , Sistemas Microeletromecânicos , Silício , Prata
2.
Phys Rev Lett ; 128(19): 197701, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35622052

RESUMO

Josephson parametric amplifiers (JPAs) approaching quantum-limited noise performance have been instrumental in enabling high fidelity readout of superconducting qubits and, recently, semiconductor quantum dots (QDs). We propose that the quantum capacitance arising in electronic two-level systems (the dual of Josephson inductance) can provide an alternative dissipationless nonlinear element for parametric amplification. We experimentally demonstrate phase-sensitive parametric amplification using a QD-reservoir electron transition in a CMOS nanowire split-gate transistor embedded in a 1.8 GHz superconducting lumped-element microwave cavity, achieving parametric gains of -3 to +3 dB, limited by Sisyphus dissipation. Using a semiclassical model, we find an optimized design within current technological capabilities could achieve gains and bandwidths comparable to JPAs, while providing complementary specifications with respect to integration in semiconductor platforms or operation at higher magnetic fields.

3.
Microsyst Nanoeng ; 8: 17, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178247

RESUMO

Mode-localized sensors have attracted attention because of their high parametric sensitivity and first-order common-mode rejection to temperature drift. The high-fidelity detection of resonator amplitude is critical to determining the resolution of mode-localized sensors where the measured amplitude ratio in a system of coupled resonators represents the output metric. Operation at specific bifurcation points in a nonlinear regime can potentially improve the amplitude bias stability; however, the amplitude ratio scale factor to the input measurand in a nonlinear regime has not been fully investigated. This paper theoretically and experimentally elucidates the operation of mode-localized sensors with respect to stiffness perturbations (or an external acceleration field) in a nonlinear Duffing regime. The operation of a mode-localized accelerometer is optimized with the benefit of the insights gained from theoretical analysis with operation in the nonlinear regime close to the top critical bifurcation point. The phase portraits of the amplitudes of the two resonators under different drive forces are recorded to support the experimentally observed improvements for velocity random walk. Employing temperature control to suppress the phase and amplitude variations induced by the temperature drift, 1/f noise at the operation frequency is significantly reduced. A prototype accelerometer device demonstrates a noise floor of 95 ng/√Hz and a bias instability of 75 ng, establishing a new benchmark for accelerometers employing vibration mode localization as a sensing paradigm. A mode-localized accelerometer is first employed to record microseismic noise in a university laboratory environment.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33017284

RESUMO

Miniaturized physical transducers based on weakly coupled resonators have previously demonstrated the twin benefits of high parametric sensitivity and the first-order common-mode rejection of environmental effects. Current approaches to sensing based on coupled resonator transducers employ strong coupling where the modal overlap of the responses is avoided. This strong coupling limits the sensitivity for such mode-localized sensors that utilize an amplitude ratio (AR) output metric as opposed to tracking resonant frequency shifts. In this article, this limitation is broken through by theoretically and experimentally demonstrating the operation of the weakly coupled resonators in the weak-coupling (modal overlap) regime. Especially, a prototype microelectromechanical systems (MEMS) sensor based on this principle is employed to detect shifts in stiffness, with a stiffness bias instability of [Formula: see text]/m (9.5 ppb) and a corresponding noise floor of [Formula: see text]/m/ √ Hz (6.8 ppb/ √ Hz). The linear dynamic range of such AR readout sensors is first explored and found to be defined by the dynamic range of the secondary resonator. The proposed method provides a promising approach for high-performance resonant force and inertial sensors.

5.
Sci Rep ; 10(1): 10415, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591608

RESUMO

This paper introduces a differential vibrating beam MEMS accelerometer demonstrating excellent long-term stability for applications in gravimetry and seismology. The MEMS gravimeter module demonstrates an output Allan deviation of 9 µGal for a 1000 s integration time, a noise floor of 100 µGal/√Hz, and measurement over the full ±1 g dynamic range (1 g = 9.81 ms-2). The sensitivity of the device is demonstrated through the tracking of Earth tides and recording of ground motion corresponding to a number of teleseismic events over several months. These results demonstrate that vibrating beam MEMS accelerometers can be employed for measurements requiring high levels of stability and resolution with wider implications for precision measurement employing other resonant-output MEMS devices such as gyroscopes and magnetometers.

6.
Sensors (Basel) ; 20(11)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498465

RESUMO

This paper successfully demonstrates the potential of weakly coupled piezoelectric MEMS (Micro-Electro-Mechanical Systems) gravimetric sensors for the detection of ultra-fine particulates. As a proof-of-principle, the detection of diesel soot particles of 100 nanometres or less is demonstrated. A practical monitoring context also exists for diesel soot particles originating from combustion engines, as they are of serious health concern. The MEMS sensors employed in this work operate on the principle of vibration mode-localisation employing an amplitude ratio shift output metric for readout. Notably, gains are observed while comparing parametric sensitivities and the input referred stability for amplitude ratio and resonant frequency variations, demonstrating that the amplitude ratio output metric is particularly suitable for long-term measurements. The soot particle mass directly estimated using coupled MEMS resonators can be correlated to the mass, indirectly estimated using the condensation particle counter used as the reference instrument.

7.
Nat Commun ; 10(1): 4980, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31672971

RESUMO

Understanding and controlling modal coupling in micro/nanomechanical devices is integral to the design of high-accuracy timing references and inertial sensors. However, insight into specific physical mechanisms underlying modal coupling, and the ability to tune such interactions is limited. Here, we demonstrate that tuneable mode coupling can be achieved in capacitive microelectromechanical devices with dynamic electrostatic fields enabling strong coupling between otherwise uncoupled modes. A vacuum-sealed microelectromechanical silicon ring resonator is employed in this work, with relevance to the gyroscopic lateral modes of vibration. It is shown that a parametric pumping scheme can be implemented through capacitive electrodes surrounding the device that allows for the mode coupling strength to be dynamically tuned, as well as allowing greater flexibility in the control of the coupling stiffness. Electrostatic pump based sideband coupling is demonstrated, and compared to conventional strain-mediated sideband operations. Electrostatic coupling is shown to be very efficient, enabling strong, tunable dynamical coupling.

8.
Artigo em Inglês | MEDLINE | ID: mdl-30371360

RESUMO

This paper presents results from the closed-loop characterization of an electrically coupled mode-localized sensor topology including measurements of amplitude ratios over a long duration, stability, noise floor, and the bandwidth of operation. The sensitivity of the prototype sensor is estimated to be -5250 in the linear operation regime. An input-referred stability of 84 ppb with respect to normalized stiffness perturbations is achieved at 500 s. When compared to frequency shift sensing within the same device, amplitude ratio sensing provides higher resolution for long-term measurements due to the intrinsic common-mode rejection properties of a mode-localized system. A theoretical framework is established to quantify noise floor associated with measurements validated through numerical simulations and experimental data. In addition, the operating bandwidth of the sensor is found to be 3.5 Hz for 3-dB flatness.

9.
Anal Chem ; 90(16): 9716-9724, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29969232

RESUMO

The interaction between atmospheric aerosol particles and water vapor influences aerosol size, phase, and composition, parameters which critically influence their impacts in the atmosphere. Methods to accurately measure aerosol water uptake for a wide range of particle types are therefore merited. We present here a new method for characterizing aerosol hygroscopicity, an impaction stage containing a microelectromechanical systems (MEMS) microresonator. We find that deliquescence and efflorescence relative humidities (RHs) of sodium chloride and ammonium sulfate are easily diagnosed via changes in resonant frequency and peak sharpness. These agree well with literature values and thermodynamic models. Furthermore, we demonstrate that, unlike other resonator-based techniques, full hygroscopic growth curves can be derived, including for an inorganic-organic mixture (sodium chloride and malonic acid) which remains liquid at all RHs. The response of the microresonator frequency to temperature and particle mechanical properties and the resulting limitations when measuring hygroscopicity are discussed. MEMS resonators show great potential as miniaturized ambient aerosol mass monitors, and future work will consider the applicability of our approach to complex ambient samples. The technique also offers an alternative to established methods for accurate thermodynamic measurements in the laboratory.

10.
Analyst ; 141(22): 6278-6286, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27704086

RESUMO

To enable multiplexed protein analysis through the use of microarrays, reliable molecules capable of specifically binding to a protein of interest with high affinity are required. Further, this specificity and affinity must be retained upon immobilization to the microarray surface. This study investigates the performance of surface bound Affimer proteins, comparing the affinity and specificity of different binders for closely related immunoglobulin molecules using the quartz crystal microbalance with dissipation monitoring (QCM-D). It is demonstrated that the surface bound Affimer proteins are highly specific, differentiating between their target IgG and other closely related IgG subclasses. The binding affinities of the protein aptamers for their target IgG molecules are determined to be in the nanomolar range, comparable to typical antibody-antigen binding affinities. While measurements herein are done using QCM-D, the high specificity and binding affinities of the surface bound Affimer proteins opens applications in a range of microarray biosensors.


Assuntos
Técnicas Biossensoriais , Proteínas Imobilizadas/química , Imunoglobulina G/análise , Técnicas de Microbalança de Cristal de Quartzo , Animais , Camundongos , Sensibilidade e Especificidade
11.
Sens Actuators B Chem ; 232: 680-691, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27594767

RESUMO

A multi-layer device, combining hydrodynamic trapping with microfluidic valving techniques, has been developed for on-chip manipulation and imaging of single cells and particles. Such a device contains a flow layer with trapping channels to capture single particles or cells and a control layer with valve channels to selectively control the trap and release processes. Particles and cells have been successfully trapped and released using the proposed device. The device enables the trapping of single particles with a trapping efficiency of greater than 95%, and allows for single particles and cells to be trapped, released and manipulated by simply controlling corresponding valves. Moreover, the trap and release processes are found to be compatible with biological samples like cells. Our device allows stable immobilisation of large numbers of single cells in a few minutes, significantly easing the experiment setup for single-cell characterisation and offering a stable platform for both single-molecule and super-resolution imaging. Proof-of-concept super- resolution imaging experiments with mouse embryonic stem cells (mESCs) have been conducted by exploiting super-resolution photoactivated localisation microscopy (PALM). Cells and nuclei were stably trapped and imaged. Centromeres of ∼200 nm size could be identified with a localisation precision of <15 nm.

12.
Sci Rep ; 6: 30167, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27445205

RESUMO

This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a -3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz.

13.
Essays Biochem ; 60(1): 101-10, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27365040

RESUMO

Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors.


Assuntos
Acústica , Técnicas Biossensoriais/métodos , Amplificadores Eletrônicos , Técnicas Biossensoriais/instrumentação
14.
Biomed Microdevices ; 18(4): 56, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27299468

RESUMO

A microfluidic device that is capable of trapping and sensing dynamic variations in the electrical properties of individual cells is demonstrated. The device is applied to the real-time recording of impedance measurements of mouse embryonic stem cells (mESCs) during the process of membrane lysis, with the resulting changes in the electrical properties of cells during this process being quantitatively tracked over time. It is observed that the impedance magnitude decreases dramatically after cell membrane lysis. A significant shift in the phase spectrum is also observed during the time course of this process. By fitting experimental data to physical models, the electrical parameters of cells can be extracted and parameter variations quantified during the process. In the cell lysis experiments, the equivalent conductivity of the cell membrane is found to increase significantly due to pore formation in the membrane during lysis. An increase in the specific capacitance of the membrane is also observed. On the other hand, the conductivity of the cytoplasm is observed to decrease, which may be explained the fact that excess water enters the cell through the gradual permeabilization of the membrane during lysis. Cells can be trapped in the device for periods up to several days, and their electrical response can be monitored by real-time impedance measurements in a label-free and non-invasive manner. Furthermore, due to the highly efficient single cell trapping capacity of the device, a number of cells can be trapped and held in separate wells for concurrent parallel experiments, allowing for the possibility of stepped parametric experiments and studying cell heterogeneity by combining measurements across the array.


Assuntos
Impedância Elétrica , Dispositivos Lab-On-A-Chip , Análise de Célula Única , Animais , Membrana Celular , Dimetilpolisiloxanos/química , Capacitância Elétrica , Células-Tronco Embrionárias/citologia , Desenho de Equipamento , Estudos de Avaliação como Assunto , Camundongos , Técnicas Analíticas Microfluídicas , Modelos Teóricos
15.
Biosens Bioelectron ; 81: 249-258, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26963790

RESUMO

Biological populations of cells show considerable cell-to-cell variability. Study of single cells and analysis of cell heterogeneity are considered to be critical in understanding biological processes such as stem cell differentiation and cancer development. Recent advances in lab-on-a-chip techniques have allowed single-cell capture in microfluidic channels with the possibility of precise environmental control and high throughput of experiments with minimal usage of samples and reagents. In recent years, label-free techniques such as electrical impedance spectroscopy have emerged as a non-invasive approach to studying cell properties. In this study, we have designed and fabricated a microfluidic device that combines hydrodynamic trapping of single cells in pre-defined locations with the capability of running electrical impedance measurements within the same device. We have measured mouse embryonic stem cells (mESCs) at different states during differentiation (t=0h, 24h and 48h) and quantitatively analysed the changes in electrical parameters of cells during differentiation. A marked increase in the magnitude of the cell impedance is found during cell differentiation, which can be attributed to an increase in cell size. The analysis of the measurements shows that the nucleus-to-cytoplasm ratio decreases during this process. The degree of cell heterogeneity is observed to be the highest when the cells are at the transition state (24h), compare with cells at undifferentiated (0h) and fully differentiated (48h) states. The device enables highly efficient single cell trapping and provides sensitive, label-free electrical impedance measurements of individual cells, enabling the possibility of quantitatively analysing their physical state as well as studying the associated heterogeneity of a cell population.


Assuntos
Diferenciação Celular , Dispositivos Lab-On-A-Chip , Células-Tronco Embrionárias Murinas/citologia , Análise de Célula Única/instrumentação , Animais , Técnicas Biossensoriais/instrumentação , Linhagem Celular , Impedância Elétrica , Desenho de Equipamento , Camundongos
16.
Ultrasonics ; 64: 186-95, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26387979

RESUMO

This article explores the characterization of homogenous materials (metals, alloys, glass and polymers) by a simple broadband ultrasonic interrogation method. The novelty lies in the use of ultrasound in a continuous way with very low input power (0 dBm or less) and analysis of the transmitted acoustic wave spectrum for material property characterization like speed of sound, density and dimensions of a material. Measurements were conducted on various thicknesses of samples immersed in liquid where continuous-wave, frequency swept ultrasonic energy was incident normal to the sample surface. The electro-acoustic transmission response is analyzed in the frequency domain with respect to a specifically constructed multi-layered analytical model. From the acoustic signature of the sample materials, material properties such as speed of sound and acoustic impedance can be calculated with experimentally derived values found to be in general agreement with the literature and with pulse-echo technique establishing the basis for a non-contact and non-destructive technique for material characterization. Further, by looking at the frequency spacing of the peaks of water when the sample is immersed, the thickness of the sample can be calculated independently from the acoustic response. This technique can prove to be an effective non-contact, non-destructive and fast material characterization technique for a wide variety of materials.


Assuntos
Análise Espectral , Ultrassom , Acústica
17.
J R Soc Interface ; 12(106)2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25878129

RESUMO

Quantifying cellular behaviour by motility and morphology changes is increasingly important in formulating an understanding of fundamental physiological phenomena and cellular mechanisms of disease. However, cells are complex biological units, which often respond to external environmental factors by manifesting subtle responses that may be difficult to interpret using conventional biophysical measurements. This paper describes the adaptation of the quartz crystal microbalance (QCM) to monitor neuroblastoma cells undergoing environmental stress wherein the frequency stability of the device can be correlated to changes in cellular state. By employing time domain analysis of the resulting frequency fluctuations, it is possible to study the variations in cellular motility and distinguish between different cell states induced by applied external heat stress. The changes in the frequency fluctuation data are correlated to phenotypical physical response recorded using optical microscopy under identical conditions of environmental stress. This technique, by probing the associated biomechanical noise, paves the way for its use in monitoring cell activity, and intrinsic motility and morphology changes, as well as the modulation resulting from the action of drugs, toxins and environmental stress.


Assuntos
Técnicas Biossensoriais/instrumentação , Movimento Celular/fisiologia , Sistemas Microeletromecânicos/instrumentação , Neurônios/citologia , Neurônios/fisiologia , Razão Sinal-Ruído , Linhagem Celular Tumoral , Tamanho Celular , Módulo de Elasticidade/fisiologia , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Neuroblastoma/patologia , Neuroblastoma/fisiopatologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estresse Mecânico
18.
Phys Rev Lett ; 111(8): 084101, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-24010440

RESUMO

Even though synchronization in autonomous systems has been observed for over three centuries, reports of systematic experimental studies on synchronized oscillators are limited. Here, we report on observations of internal synchronization in coupled silicon micromechanical oscillators associated with a reduction in the relative phase random walk that is modulated by the magnitude of the reactive coupling force between the oscillators. Additionally, for the first time, a significant improvement in the frequency stability of synchronized micromechanical oscillators is reported. The concept presented here is scalable and could be suitably engineered to establish the basis for a new class of highly precise miniaturized clocks and frequency references.

19.
Artigo em Inglês | MEDLINE | ID: mdl-25004537

RESUMO

We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

20.
Nanotechnology ; 23(2): 025501, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22166842

RESUMO

In this paper, we present experimental results describing enhanced readout of the vibratory response of a doubly clamped zinc oxide (ZnO) nanowire employing a purely electrical actuation and detection scheme. The measured response suggests that the piezoelectric and semiconducting properties of ZnO effectively enhance the motional current for electromechanical transduction. For a doubly clamped ZnO nanowire resonator with radius ~10 nm and length ~1.91 µm, a resonant frequency around 21.4 MHz is observed with a quality factor (Q) of ~358 in vacuum. A comparison with the Q obtained in air (~242) shows that these nano-scale devices may be operated in fluid as viscous damping is less significant at these length scales. Additionally, the suspended nanowire bridges show field effect transistor (FET) characteristics when the underlying silicon substrate is used as a gate electrode or using a lithographically patterned in-plane gate electrode. Moreover, the Young's modulus of ZnO nanowires is extracted from a static bending test performed on a nanowire cantilever using an AFM and the value is compared to that obtained from resonant frequency measurements of electrically addressed clamped­clamped beam nanowire resonators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA