Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 287(1930): 20200449, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32635865

RESUMO

Predicting species' capacity to respond to climate change is an essential first step in developing effective conservation strategies. However, conservation prioritization schemes rarely take evolutionary potential into account. Ecotones provide important opportunities for diversifying selection and may thus constitute reservoirs of standing variation, increasing the capacity for future adaptation. Here, we map patterns of environmentally associated genomic and craniometric variation in the central African rodent Praomys misonnei to identify areas with the greatest turnover in genomic composition. We also project patterns of environmentally associated genomic variation under future climate change scenarios to determine where populations may be under the greatest pressure to adapt. While precipitation gradients influence both genomic and craniometric variation, vegetation structure is also an important determinant of craniometric variation. Areas of elevated environmentally associated genomic and craniometric variation overlap with zones of rapid ecological transition underlining their importance as reservoirs of evolutionary potential. We also find that populations in the Sanaga river basin, central Cameroon and coastal Gabon are likely to be under the greatest pressure from climate change. Lastly, we make specific conservation recommendations on how to protect zones of high evolutionary potential and identify areas where populations may be the most susceptible to climate change.


Assuntos
Mudança Climática , Murinae , Adaptação Fisiológica , Animais , Evolução Biológica , Ecossistema
2.
PLoS One ; 13(6): e0199288, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29924870

RESUMO

The amphibian disease chytridiomycosis in amphibians is caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd) and has resulted in dramatic declines and extinctions of amphibian populations worldwide. A hypervirulent, globally-dispersed pandemic lineage (Bd-GPL) is thought to be largely responsible for population declines and extinctions, although numerous endemic lineages have also been found. Recent reports of amphibian declines have been linked to the emergence of Bd in Cameroon, a major hotspot of African amphibian diversity. However, it is not known whether Bd-GPL or other lineages have been found in this region. This study therefore aims to examine Bd lineage diversity in the region and predict the distribution of this pathogen under current and future climate conditions using data from this study and from historical records. Almost 15% (52/360) of individuals tested positive for Bd using a standard quantitative PCR diagnostic. Infected amphibians were found at all eight sites sampled in this study. Species distribution models generated in BIOMOD2 indicate that areas with highest predicted environmental suitability occur in the Cameroon highlands and several protected areas throughout the country. These areas of high environmental suitability for Bd are projected to shift or decrease in size under future climate change. However, montane regions with high amphibian diversity are predicted to remain highly suitable. Phylogenetic analysis of the ITS sequences obtained from a set of positive Bd samples indicate that most fall within the Bd-GPL lineage while the remainder group with isolates from either Brazil or South Korea. Although more in depth phylogenetic analyses are needed, identification of Bd-GPL lineages in areas of high amphibian diversity emphasizes the need to continue to monitor for Bd and develop appropriate conservation strategies to prevent its further spread.


Assuntos
Anfíbios/microbiologia , Biodiversidade , Quitridiomicetos/classificação , Filogenia , Animais , Camarões/epidemiologia , DNA Espaçador Ribossômico/genética , Geografia , Interações Hospedeiro-Patógeno , Micoses/epidemiologia , Micoses/microbiologia , Prevalência , RNA Ribossômico/genética , Especificidade da Espécie
3.
Sci Total Environ ; 610-611: 503-510, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28830045

RESUMO

Although a number of recent studies suggest that climate associated shifts in agriculture are affecting social and economic systems, there have been relatively few studies of these effects in Africa. Such studies would be particularly useful in Central Africa, where the impacts of climate warming are predicted to be high but coincide with an area with low adaptive capacity. Focusing on plantain (Musa paradisiaca), we assess whether recent climate change has led to reduced yields. Analysis of annual temperature between 1950 and 2013 indicated a 0.8°C temperature increase over this 63-year period - a trend that is also observed in monthly temperatures in the last twenty years. From 1991 to 2011, there was a 43% decrease in plantain productivity in Central Africa, which was explained by shifts in temperature (R2=0.68). This decline may have reduced rural household wealth and decreased parental investment in education. Over the past two decades, there was a six month decrease in the duration of school attendance, and the decline was tightly linked to plantain yield (R2=0.82). By 2080, mean annual temperature is expected to increase at least 2°C in Central Africa, and our models predict a concomitant decrease of 39% in plantain yields and 51% in education outcomes, relative to the 1991 baseline. These predictions should be seen as a call-to-action for policy interventions such as farmer training programs to enhance the adaptive capacity of food production systems to mitigate impacts on rural income and education.


Assuntos
Absenteísmo , Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Temperatura , África Central , Agricultura , Escolaridade , Humanos , Instituições Acadêmicas
4.
Am J Primatol ; 79(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28388824

RESUMO

Bioko Island, Equatorial Guinea is among the important places in Africa for the conservation of primates, but a cultural preference for bushmeat and a lack of effective law enforcement has encouraged commercial bushmeat hunting, threatening the survival of the remaining primate population. For over 13 years, we collected bushmeat market data in the Malabo market, recording over 35,000 primate carcasses, documenting "mardi gras" consumption patterns, seasonal carcass availability, and negative effects resulting from government intervention. We also conducted forest surveys throughout Bioko's two protected areas in order to localize and quantify primate populations and hunting pressure. Using these data, we were able to document the significant negative impact bushmeat hunting had on monkey populations, estimate which species are most vulnerable to hunting, and develop ecological niche models to approximate the distribution of each of Bioko's diurnal primate species. These results also have allowed for the identification of primate hotspots, such as the critically important southwest region of the Gran Caldera Scientific Reserve, and thus, priority areas for conservation on Bioko, leading to more comprehensive conservation recommendations. Current and future efforts now focus on bridging the gap between investigators and legislators in order to develop and effectively implement a management plan for Bioko's Gran Caldera Scientific Reserve and to develop a targeted educational campaign to reduce demand by changing consumer attitudes toward bushmeat. Using this multidisciplinary approach, informed by biological, socioeconomic, and cultural research, there may yet be a positive future for the primates of Bioko.


Assuntos
Conservação dos Recursos Naturais/legislação & jurisprudência , Legislação sobre Alimentos , Carne , Primatas , Animais , Guiné Equatorial , Humanos
5.
PLoS One ; 11(8): e0160788, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27505066

RESUMO

Simian immunodeficiency virus (SIV) naturally infects two subspecies of chimpanzee: Pan troglodytes troglodytes from Central Africa (SIVcpzPtt) and P. t. schweinfurtii from East Africa (SIVcpzPts), but is absent in P. t. verus from West Africa and appears to be absent in P. t. ellioti inhabiting Nigeria and western Cameroon. One explanation for this pattern is that P. t. troglodytes and P. t schweinfurthii may have acquired SIVcpz after their divergence from P. t. verus and P. t. ellioti. However, all of the subspecies, except P. t. verus, still occasionally exchange migrants making the absence of SIVcpz in P. t. ellioti puzzling. Sampling of P. t. ellioti has been minimal to date, particularly along the banks of the Sanaga River, where its range abuts that of P. t. troglodytes. This study had three objectives. First, we extended the sampling of SIVcpz across the range of chimpanzees north of the Sanaga River to address whether under-sampling might account for the absence of evidence for SIVcpz infection in P. t. ellioti. Second, we investigated how environmental variation is associated with the spread and prevalence of SIVcpz in the two chimpanzee subspecies inhabiting Cameroon since environmental variation has been shown to contribute to their divergence from one another. Finally, we compared the prevalence and distribution of SIVcpz with that of Simian Foamy Virus (SFV) to examine the role of ecology and behavior in shaping the distribution of diseases in wild host populations. The dataset includes previously published results on SIVcpz infection and SFVcpz as well as newly collected data, and represents over 1000 chimpanzee fecal samples from 41 locations across Cameroon. Results revealed that none of the 181 P. t. ellioti fecal samples collected across the range of P. t. ellioti tested positive for SIVcpz. In addition, species distribution models suggest that environmental variation contributes to differences in the distribution and prevalence of SIVcpz and SFVcpz. The ecological niches of these two viruses are largely non-overlapping, although stronger statistical support for this conclusion will require more sampling. Overall this study demonstrates that SIVcpz infection is absent or very rare in P. t. ellioti, despite multiple opportunities for transmission. The reasons for its absence remain unclear, but might be explained by one or more factors, including environmental variation, viral competition, and/or local adaptation-all of which should be explored in greater detail through continued surveillance of this region.


Assuntos
Pan troglodytes/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/epidemiologia , Animais , Camarões/epidemiologia , Meio Ambiente , Fezes/virologia , Modelos Estatísticos , Nigéria/epidemiologia , Prevalência
6.
BMC Evol Biol ; 15: 1, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25608511

RESUMO

BACKGROUND: The mechanisms that underlie the diversification of tropical animals remain poorly understood, but new approaches that combine geo-spatial modeling with spatially explicit genetic data are providing fresh insights on this topic. Data about the diversification of tropical mammals remain particularly sparse, and vanishingly few opportunities exist to study endangered large mammals that increasingly exist only in isolated pockets. The chimpanzees of Cameroon represent a unique opportunity to examine the mechanisms that promote genetic differentiation in tropical mammals because the region is home to two chimpanzee subspecies: Pan troglodytes ellioti and P. t. trogolodytes. Their ranges converge in central Cameroon, which is a geographically, climatically and environmentally complex region that presents an unparalleled opportunity to examine the roles of rivers and/or environmental variation in influencing the evolution of chimpanzee populations. RESULTS: We analyzed microsatellite genotypes and mtDNA HVRI sequencing data from wild chimpanzees sampled at a fine geographic scale across Cameroon and eastern Nigeria using a spatially explicit approach based upon Generalized Dissimilarity Modeling. Both the Sanaga River and environmental variation were found to contribute to driving separation of the subspecies. The importance of environmental variation differed among subspecies. Gene-environment associations were weak in P. t. troglodytes, whereas environmental variation was found to play a much larger role in shaping patterns of genetic differentiation in P. t. ellioti. CONCLUSIONS: We found that both the Sanaga River and environmental variation likely play a role in shaping patterns of chimpanzee genetic diversity. Future studies using single nucleotide polymorphism (SNP) data are necessary to further understand how rivers and environmental variation contribute to shaping patterns of genetic variation in chimpanzees.


Assuntos
Variação Genética , Pan troglodytes/genética , África , Animais , Biodiversidade , Evolução Biológica , DNA Mitocondrial/genética , Interação Gene-Ambiente , Genética Populacional , Hominidae/genética , Repetições de Microssatélites , Pan troglodytes/classificação , Rios
7.
BMC Evol Biol ; 15: 2, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25608567

RESUMO

BACKGROUND: The Nigeria-Cameroon chimpanzee (Pan troglodytes ellioti) is found in the Gulf of Guinea biodiversity hotspot located in western equatorial Africa. This subspecies is threatened by habitat fragmentation due to logging and agricultural development, hunting for the bushmeat trade, and possibly climate change. Although P. t. ellioti appears to be geographically separated from the neighboring central chimpanzee (P. t. troglodytes) by the Sanaga River, recent population genetics studies of chimpanzees from across this region suggest that additional factors may also be important in their separation. The main aims of this study were: 1) to model the distribution of suitable habitat for P. t. ellioti across Cameroon and Nigeria, and P. t. troglodytes in southern Cameroon, 2) to determine which environmental factors best predict their optimal habitats, and 3) to compare modeled niches and test for their levels of divergence from one another. A final aim of this study was to examine the ways that climate change might impact suitable chimpanzee habitat across the region under various scenarios. RESULTS: Ecological niche models (ENMs) were created using the software package Maxent for the three populations of chimpanzees that have been inferred to exist in Cameroon and eastern Nigeria: (i) P. t. troglodytes in southern Cameroon, (ii) P. t. ellioti in northwestern Cameroon, and (iii) P. t. ellioti in central Cameroon. ENMs for each population were compared using the niche comparison test in ENMtools, which revealed complete niche divergence with very little geographic overlap of suitable habitat between populations. CONCLUSIONS: These findings suggest that a positive relationship may exist between environmental variation and the partitioning of genetic variation found in chimpanzees across this region. ENMs for each population were also projected under three different climate change scenarios for years 2020, 2050, and 2080. Suitable habitat of P. t. ellioti in northwest Cameroon / eastern Nigeria is expected to remain largely unchanged through 2080 in all considered scenarios. In contrast, P. t. ellioti in central Cameroon, which represents half of the population of this subspecies, is expected to experience drastic reductions in its ecotone habitat over the coming century.


Assuntos
Mudança Climática , Ecossistema , Pan troglodytes/classificação , Pan troglodytes/genética , Animais , Camarões , Variação Genética , Genética Populacional , Nigéria
8.
BMC Evol Biol ; 15: 3, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25608610

RESUMO

BACKGROUND: Chimpanzees (Pan troglodytes) can be divided into four subspecies. Substantial phylogenetic evidence suggests that these subspecies can be grouped into two distinct lineages: a western African group that includes P. t. verus and P. t. ellioti and a central/eastern African group that includes P. t. troglodytes and P. t. schweinfurthii. The geographic division of these two lineages occurs in Cameroon, where the rages of P. t. ellioti and P. t. troglodytes appear to converge at the Sanaga River. Remarkably, few population genetic studies have included wild chimpanzees from this region. RESULTS: We analyzed microsatellite genotypes of 187 wild, unrelated chimpanzees, and mitochondrial control region sequencing data from 604 chimpanzees. We found that chimpanzees in Cameroon and eastern Nigeria comprise at least two, and likely three populations. Both the mtDNA and microsatellite data suggest that there is a primary separation of P. t. troglodytes in southern Cameroon from P. t. ellioti north and west of the Sanaga River. These two populations split ~200-250 thousand years ago (kya), but have exchanged one migrant per generation since separating. In addition, P. t. ellioti consists of two populations that split from one another ~4 kya. One population is located in the rainforests of western Cameroon and eastern Nigeria, whereas the second population appears to be confined to a savannah-woodland mosaic in central Cameroon. CONCLUSIONS: Our findings suggest that there are as many as three genetically distinct populations of chimpanzees in Cameroon and eastern Nigeria. P. t. troglodytes in southern Cameroon comprises one population that is separated from two populations of P. t. ellioti in western and central Cameroon, respectively. P. t. ellioti and P. t. troglodytes appear to be characterized by a pattern of isolation-with-migration, and thus, we propose that neutral processes alone can not explain the differentiation of P. t. ellioti and P. t. troglodytes.


Assuntos
Evolução Biológica , Pan troglodytes/classificação , Pan troglodytes/genética , Animais , Camarões , DNA Mitocondrial/genética , Genética Populacional , Repetições de Microssatélites , Nigéria , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA