Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pigment Cell Melanoma Res ; 36(6): 454, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37903734
2.
Pigment Cell Melanoma Res ; 36(5): 330-347, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37132530

RESUMO

Melanoma, a lethal malignancy that arises from melanocytes, exhibits a multiplicity of clinico-pathologically distinct subtypes in sun-exposed and non-sun-exposed areas. Melanocytes are derived from multipotent neural crest cells and are present in diverse anatomical locations, including skin, eyes, and various mucosal membranes. Tissue-resident melanocyte stem cells and melanocyte precursors contribute to melanocyte renewal. Elegant studies using mouse genetic models have shown that melanoma can arise from either melanocyte stem cells or differentiated pigment-producing melanocytes depending on a combination of tissue and anatomical site of origin and activation of oncogenic mutations (or overexpression) and/or the repression in expression or inactivating mutations in tumor suppressors. This variation raises the possibility that different subtypes of human melanomas (even subsets within each subtype) may also be a manifestation of malignancies of distinct cells of origin. Melanoma is known to exhibit phenotypic plasticity and trans-differentiation (defined as a tendency to differentiate into cell lineages other than the original lineage from which the tumor arose) along vascular and neural lineages. Additionally, stem cell-like properties such as pseudo-epithelial-to-mesenchymal (EMT-like) transition and expression of stem cell-related genes have also been associated with the development of melanoma drug resistance. Recent studies that employed reprogramming melanoma cells to induced pluripotent stem cells have uncovered potential relationships between melanoma plasticity, trans-differentiation, and drug resistance and implications for cell or origin of human cutaneous melanoma. This review provides a comprehensive summary of the current state of knowledge on melanoma cell of origin and the relationship between tumor cell plasticity and drug resistance.


Assuntos
Células-Tronco Pluripotentes Induzidas , Melanoma , Neoplasias Cutâneas , Animais , Camundongos , Humanos , Melanoma/patologia , Neoplasias Cutâneas/patologia , Plasticidade Celular , Melanócitos/metabolismo , Diferenciação Celular , Resistência a Medicamentos , Células-Tronco Pluripotentes Induzidas/metabolismo , Crista Neural/metabolismo
3.
Cancers (Basel) ; 15(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672468

RESUMO

Both oncogenic and tumor suppressor roles have been assigned to Notch signaling in melanoma. In clinical trials, Notch inhibitors proved to be ineffective for melanoma treatment. Notch signaling has also been implicated in melanoma transdifferentiation, a prognostic feature in primary melanoma. In this study, we investigated the role of Notch signaling in melanoma tumor development and growth using the genetic model of mouse melanoma by crossing BRAFCA/+/Pten+/+/Tyr-CreER+ (B) and BRAFCA/+/Pten-/-/Tyr-CreER + (BP) mice with Notch1 or Notch2 floxed allele mice. The topical application of tamoxifen induced tumors in BP mice but not in B mice with or without the deletion of either Notch1 or Notch2. These data show that the loss of either Notch1 nor Notch2 can substitute the tumor suppressor function of Pten in BRAFV600E-induced melanomagenesis. However, in Pten-null background, the loss of either Notch1 or Notch2 appeared to accelerate BRAFV600E-induced tumor development, suggesting a tumor suppressor role for Notch1 and Notch2 in BRAFV600E/Pten-null driven melanomagenesis. Quantitative immunochemical analysis of a human cutaneous melanoma tissue microarray that consists of >100 primary tumors with complete clinical history showed a weak to moderate correlation between NOTCH protein levels and clinical and pathological parameters. Our data show that Notch signaling is involved during melanomagenesis and suggest that the identification of genes and signaling pathways downstream of Notch could help devise strategies for melanoma prevention.

4.
bioRxiv ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38187693

RESUMO

Satellite cells are skeletal muscle stem cells that contribute to postnatal muscle growth, and they endow skeletal muscle with the ability to regenerate after a severe injury. Here we discovered that this myogenic potential of satellite cells requires a protein called tripartite motif-containing 28 (TRIM28). Unexpectedly, multiple lines of both in vitro and in vivo evidence revealed that the myogenic function of TRIM28 is not dependent on changes in the phosphorylation of its serine 473 residue. Moreover, the functions of TRIM28 were not mediated through the regulation of satellite cell proliferation or differentiation. Instead, our findings indicate that TRIM28 regulates the ability of satellite cells to progress through the process of fusion. Specifically, we discovered that TRIM28 controls the expression of a fusogenic protein called myomixer and concomitant fusion pore formation. Collectively, the outcomes of this study expose the framework of a novel regulatory pathway that is essential for myogenesis.

5.
Sci Rep ; 12(1): 14395, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999349

RESUMO

Melanoma cells exhibit phenotypic plasticity that allows transition from a proliferative and differentiated phenotype to a more invasive and undifferentiated or transdifferentiated phenotype often associated with drug resistance. The mechanisms that control melanoma phenotype plasticity and its role in drug resistance are not fully understood. We previously demonstrated that emergence of MAPK inhibitor (MAPKi)-resistance phenotype is associated with decreased expression of stem cell proliferation genes and increased expression of MAPK inactivation genes, including dual specificity phosphatases (DUSPs). Several members of the DUSP family genes, specifically DUSP1, -3, -8 and -9, are expressed in primary and metastatic melanoma cell lines and pre-and post BRAFi treated melanoma cells. Here, we show that knockdown of DUSP1 or DUSP8 or treatment with BCI, a pharmacological inhibitor of DUSP1/6 decrease the survival of MAPKi-resistant cells and sensitizes them to BRAFi and MEKi. Pharmacological inhibition of DUSP1/6 upregulated nestin, a neural crest stem cell marker, in both MAPKi-sensitive cells and cells with acquired MAPKi-resistance. In contrast, treatment with BCI resulted in upregulation of MAP2, a neuronal differentiation marker, only in MAPKi-sensitive cells but caused downregulation of both MAP2 and GFAP, a glial marker, in all MAPKi-resistant cell lines. These data suggest that DUSP proteins are involved in the regulation of cellular plasticity cells and melanoma drug resistance and are potential targets for treatment of MAPKi-resistant melanoma.


Assuntos
Plasticidade Celular , Melanoma , Linhagem Celular Tumoral , Plasticidade Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fosfatases de Especificidade Dupla/genética , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Inibidores de Proteínas Quinases/farmacologia
6.
Mol Cancer Res ; 20(10): 1548-1560, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35834616

RESUMO

Exchange proteins directly activated by cAMP (EPAC) belong to a family of RAP guanine nucleotide exchange factors (RAPGEF). EPAC1/2 (RAPGEF3/4) activates RAP1 and the alternative cAMP signaling pathway. We previously showed that the differential growth response of primary and metastatic melanoma cells to cAMP is mediated by EPAC. However, the mechanisms responsible for this differential response to EPAC signaling are not understood. In this study, we show that pharmacologic inhibition or siRNA-mediated knockdown of EPAC selectively inhibits the growth and survival of primary melanoma cells by downregulation of cell-cycle proteins and inhibiting the cell-cycle progression independent of ERK1/2 phosphorylation. EPAC inhibition results in upregulation of AKT phosphorylation but a downregulation of mTORC1 activity and its downstream effectors. We also show that EPAC regulates both glycolysis and oxidative phosphorylation, and production of mitochondrial reactive oxygen species, preferentially in primary melanoma cells. Employing a series of genetically matched primary and lymph node metastatic (LNM) melanoma cells, and distant organ metastatic melanoma cells, we show that the LNM and metastatic melanoma cells become progressively less responsive and refractory to EPAC inhibition suggesting loss of dependency on EPAC signaling correlates with melanoma progression. Analysis of The Cancer Genome Atlas dataset showed that lower RAPGEF3, RAPGEF4 mRNA expression in primary tumor is a predictor of better disease-free survival of patients diagnosed with primary melanoma suggesting that EPAC signaling facilitates tumor progression and EPAC is a useful prognostic marker. These data highlight EPAC signaling as a potential target for prevention of melanoma progression. IMPLICATIONS: This study establishes loss of dependency on EPAC-mTORC1 signaling as hallmark of primary melanoma evolution and targeting this escape mechanism is a promising strategy for metastatic melanoma.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Melanoma , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Melanoma/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno , Espécies Reativas de Oxigênio , Transdução de Sinais
7.
Cancers (Basel) ; 14(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35267541

RESUMO

BRAFV600E is the most common mutation driver in melanoma. This mutation is known to cause a brief burst of proliferation followed by growth arrest and senescence, which prevent an uncontrolled cell proliferation. This phenomenon is known as oncogene-induced senescence (OIS) and OIS escape is thought to lead to melanomagenesis. Much attention has been focused on the melanocyte-intrinsic mechanisms that contribute to senescence escape. Additional genetic events such as the loss of tumor suppressor PTEN and/or epigenetic changes that contribute to senescence escape have been described. However, the role of the skin microenvironment-specifically, the role of epidermal keratinocytes-on melanomagenesis is not fully understood. In this study, we employ a microfluidic platform to study the interaction between melanocytes expressing the BRAFV600E mutation as well as keratinocytes and dermal fibroblasts. We demonstrate that keratinocytes suppress senescence-related genes and promote the proliferation of transformed melanocytes. We also show that a keratinocyte-conditioned medium can alter the secretion of both pro- and anti-tumorigenic factors by transformed melanocytes. In addition, we show that melanocytes and keratinocytes from donors of white European and black African ancestry display different crosstalks; i.e., white keratinocytes appear to promote a more pro-tumorigenic phenotype compared with black keratinocytes. These data suggest that keratinocytes exert their influence on melanomagenesis both by suppressing senescence-related genes in melanocytes and by affecting the balance of the melanocyte-secreted factors that favor tumorigenesis.

8.
Lab Chip ; 21(6): 1139-1149, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33533390

RESUMO

Melanoma evolution is a complex process. The role epidermal keratinocytes and dermal fibroblasts play in this process and the mechanisms involved in tumor-stroma interactions remain poorly understood. Here, we used a microfluidic platform to evaluate the cross-talk between human primary melanoma cells, keratinocytes and dermal fibroblasts. The microfluidic device included multiple circular chambers separated by a series of narrow connection channels. The microdevice design allowed us to develop a new cell patterning method based on air-walls, removing the need for hydrogel barriers, porous membranes, or external equipment. Using this method, we co-cultured melanoma cells in the presence of keratinocytes and/or dermal fibroblasts. The results demonstrated that the presence of dermal fibroblasts and keratinocytes led to changes in melanoma cell morphology and growth pattern. Molecular analysis revealed changes in the chemokine secretion pattern, identifying multiple secreted factors involved in tumor progression. Finally, optical metabolic imaging showed that melanoma cells, fibroblasts, and keratinocytes exhibited different metabolic features. Additionally, the presence of stromal cells led to a metabolic shift in melanoma cells, highlighting the role the skin microenvironment on melanoma evolution.


Assuntos
Melanoma , Microfluídica , Células Cultivadas , Fibroblastos , Humanos , Queratinócitos , Fenótipo , Microambiente Tumoral
9.
Mol Cancer Ther ; 20(1): 161-172, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33177155

RESUMO

Melanoma is one of the most serious forms of skin cancer, and its increasing incidence coupled with nonlasting therapeutic options for metastatic disease highlights the need for additional novel approaches for its management. In this study, we determined the potential interactions between polo-like kinase 1 (PLK1, a serine/threonine kinase involved in mitotic regulation) and NOTCH1 (a type I transmembrane protein deciding cell fate during development) in melanoma. Employing an in-house human melanoma tissue microarray (TMA) containing multiple cases of melanomas and benign nevi, coupled with high-throughput, multispectral quantitative fluorescence imaging analysis, we found a positive correlation between PLK1 and NOTCH1 in melanoma. Furthermore, The Cancer Genome Atlas database analysis of patients with melanoma showed an association of higher mRNA levels of PLK1 and NOTCH1 with poor overall, as well as disease-free, survival. Next, utilizing small-molecule inhibitors of PLK1 and NOTCH (BI 6727 and MK-0752, respectively), we found a synergistic antiproliferative response of combined treatment in multiple human melanoma cells. To determine the molecular targets of the overall and synergistic responses of combined PLK1 and NOTCH inhibition, we conducted RNA-sequencing analysis employing a unique regression model with interaction terms. We identified the modulations of several key genes relevant to melanoma progression/metastasis, including MAPK, PI3K, and RAS, as well as some new genes such as Apobec3G, BTK, and FCER1G, which have not been well studied in melanoma. In conclusion, our study demonstrated a synergistic antiproliferative response of concomitant targeting of PLK1 and NOTCH in melanoma, unraveling a potential novel therapeutic approach for detailed preclinical/clinical evaluation.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Melanoma/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Receptores Notch/antagonistas & inibidores , Receptores Notch/metabolismo , Transdução de Sinais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Pleiotropia Genética , Humanos , Melanoma/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Análise de Sobrevida , Quinase 1 Polo-Like
10.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260673

RESUMO

Tumor-specific metabolic adaptations offer an interesting therapeutic opportunity to selectively destroy cancer cells. However, solid tumors also present gradients of nutrients and waste products across the tumor mass, forcing tumor cells to adapt their metabolism depending on nutrient availability in the surrounding microenvironment. Thus, solid tumors display a heterogenous metabolic phenotype across the tumor mass, which complicates the design of effective therapies that target all the tumor populations present. In this work, we used a microfluidic device to study tumor metabolic vulnerability to several metabolic inhibitors. The microdevice included a central chamber to culture tumor cells in a three-dimensional (3D) matrix, and a lumen in one of the chamber flanks. This design created an asymmetric nutrient distribution across the central chamber, generating gradients of cell viability. The results revealed that tumor cells located in a nutrient-enriched environment showed low to no sensitivity to metabolic inhibitors targeting glycolysis, fatty acid oxidation, or oxidative phosphorylation. Conversely, when cell density inside of the model was increased, compromising nutrient supply, the addition of these metabolic inhibitors disrupted cellular redox balance and led to tumor cell death.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Modelos Biológicos , Neoplasias/metabolismo , Contagem de Células , Humanos , Células MCF-7 , Necrose , Neoplasias/patologia , Hipóxia Tumoral
12.
Epigenetics Chromatin ; 13(1): 14, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32151278

RESUMO

BACKGROUND: Pharmacologic inhibition of bromodomain and extra-terminal (BET) proteins is currently being explored as a new therapeutic approach in cancer. Some studies have also implicated BET proteins as regulators of cell identity and differentiation through their interactions with lineage-specific factors. However, the role of BET proteins has not yet been investigated in melanocyte differentiation. Melanocyte inducing transcription factor (MITF) is the master regulator of melanocyte differentiation, essential for pigmentation and melanocyte survival. In this study, we tested the hypothesis that BET proteins regulate melanocyte differentiation through interactions with MITF. RESULTS: Here we show that chemical inhibition of BET proteins prevents differentiation of unpigmented melanoblasts into pigmented melanocytes and results in de-pigmentation of differentiated melanocytes. BET inhibition also slowed cell growth, without causing cell death, increasing the number of cells in G1. Transcriptional profiling revealed that BET inhibition resulted in decreased expression of pigment-specific genes, including many MITF targets. The expression of pigment-specific genes was also down-regulated in melanoma cells, but to a lesser extent. We found that RNAi depletion of the BET family members, bromodomain-containing protein 4 (BRD4) and bromodomain-containing protein 2 (BRD2) inhibited expression of two melanin synthesis enzymes, TYR and TYRP1. Both BRD4 and BRD2 were detected on melanocyte promoters surrounding MITF-binding sites, were associated with open chromatin structure, and promoted MITF binding to these sites. Furthermore, BRD4 and BRD2 physically interacted with MITF. CONCLUSION: These findings indicate a requirement for BET proteins in the regulation of pigmentation and melanocyte differentiation. We identified changes in pigmentation specific gene expression that occur upon BET inhibition in melanoblasts, melanocytes, and melanoma cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Melanócitos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Células HEK293 , Humanos , Melaninas/biossíntese , Melaninas/genética , Melanócitos/citologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/genética
14.
Mol Carcinog ; 58(11): 1974-1984, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31338875

RESUMO

Wnt/ß-catenin signaling plays an important role in melanocyte biology, especially in the early stages of melanocyte transformation and melanomagenesis. ß-catenin, encoded by the gene CTNNB1, is an intracellular signal transducer of Wnt signaling and activates transcription of genes important for cell proliferation and survival. Wnt/ß-catenin signaling is frequently activated in melanoma through oncogenic mutations of ß-catenin and elevated ß-catenin levels are positively correlated with melanoma aggressiveness. Molecular mechanisms that regulate ß-catenin expression in melanoma are not fully understood. MicroRNA-214 is known to function as a tumor suppressor by targeting ß-catenin in several types of cancer cells. Here, we investigated the regulation of ß-catenin by miR-214 and its role in melanoma. We show that ß-catenin mRNA levels are negatively correlated with miR-214 in melanoma. However, overexpression of miR-214 paradoxically increased ß-catenin protein levels and promoted malignant properties of melanoma cells including resistance to mitogen-activated protein kinase inhibitors (MAPKi). RNA-seq analysis revealed that melanoma cells predominantly express a ß-catenin mRNA isoform lacking miR-214 target site. Using matched miRNA and mRNA-seq and bioinformatics analysis, we identified novel miR-214 targets, ankyrin repeat domain 6 (ANKRD6) and C-terminal binding protein 1 (CTBP1), that are involved in negative regulation of Wnt signaling. Overexpression of miR-214 or knockdown of the novel miR-214 targets, ANKRD6 or CTBP1, increased melanoma cell proliferation, migration, and decreased sensitivity to MAPKi. Our data suggest that in melanoma cells ß-catenin is not regulated by miR-214 and the functions of miR-214 in melanoma are mediated partly by regulating proteins involved in attenuation of Wnt/ß-catenin signaling.


Assuntos
Melanoma/genética , MicroRNAs/genética , beta Catenina/genética , Oxirredutases do Álcool/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Melanoma/patologia , RNA Mensageiro/genética , Via de Sinalização Wnt/genética
15.
Stem Cell Reports ; 13(1): 177-192, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31231022

RESUMO

Melanomas are known to exhibit phenotypic plasticity. However, the role cellular plasticity plays in melanoma tumor progression and drug resistance is not fully understood. Here, we used reprogramming of melanocytes and melanoma cells to induced pluripotent stem cell (iPSCs) to investigate the relationship between cellular plasticity and melanoma progression and mitogen-activated protein kinase (MAPK) inhibitor resistance. We found that melanocyte reprogramming is prevented by the expression of oncogenic BRAF, and in melanoma cells harboring oncogenic BRAF and sensitive to MAPK inhibitors, reprogramming can be restored by inhibition of the activated oncogenic pathway. Our data also suggest that melanoma tumor progression acts as a barrier to reprogramming. Under conditions that promote melanocytic differentiation of fibroblast- and melanocyte-derived iPSCs, melanoma-derived iPSCs exhibited neural cell-like dysplasia and increased MAPK inhibitor resistance. These data suggest that iPSC-like reprogramming and drug resistance of differentiated cells can serve as a model to understand melanoma cell plasticity-dependent mechanisms in recurrence of aggressive drug-resistant melanoma.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Biomarcadores Tumorais , Diferenciação Celular , Linhagem Celular Tumoral , Plasticidade Celular , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/genética , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Melanócitos/metabolismo , Melanoma/genética , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Mutação , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/farmacologia
17.
Oncoscience ; 6(1-2): 283-284, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30800712
18.
Pigment Cell Melanoma Res ; 32(4): 528-539, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30614626

RESUMO

The role of Notch signaling in melanoma drug resistance is not well understood. In this study, we show that although NOTCH proteins are upregulated in metastatic melanoma cell lines, Notch signaling inhibition had no effect on cell survival, growth, migration or the sensitivity of BRAFV600E-melanoma cells to MAPK inhibition (MAPKi). We found that NOTCH1 is downregulated in melanoma cell lines with intrinsic and acquired resistance to MAPKi. Forced expression of NICD1, the active form of Notch1, caused apoptosis of the NOTCHlo , MAPKi-resistant cells, but not the NOTCHhi , MAPKi-sensitive melanoma cell lines. Whole transcriptome-sequencing analyses of NICD1-transduced MAPKi-sensitive and MAPKi-resistant cells revealed differential regulation of endothelin 1 (EDN1) by NICD1, that is, downregulation in MAPKi-resistant cells and upregulation in MAPKi-sensitive cells. Knockdown of EDN1 partially mimicked the effect of NICD1 on the survival of MAPKi-resistant cells. We show that the opposite regulation of EDN1 by Notch signaling is mediated by the differential regulation of c-JUN by NICD1. Our data show that MAPKi-resistant melanoma cells acquire vulnerability to Notch signaling activation and suggest that Notch-c-JUN-EDN1 axis is a potential therapeutic target in MAPKi-resistant melanoma.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melanoma/enzimologia , Melanoma/patologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Receptores Notch/metabolismo , Transdução de Sinais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Endotelina-1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição HES-1/metabolismo , Transcriptoma/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
20.
Chem Commun (Camb) ; 54(7): 710-714, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29299559

RESUMO

We report the development of an antibody (anti-MC1R antibody)-functionalized polyaniline nanofibers modified screen-printed electrode capable of efficient electrochemical detection of melanoma cells at levels (1 cell per mL) not readily achieved by other methods. This immunosensor is highly selective in its detection of melanoma cells over normal human cells.


Assuntos
Compostos de Anilina/química , Técnicas Eletroquímicas , Imunoensaio/métodos , Melanoma/diagnóstico , Linhagem Celular Tumoral , Eletrodos , Células HEK293 , Humanos , Nanofibras/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA