Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Health Commun ; 38(4): 695-704, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34459348

RESUMO

Communication about menstrual health continues to be influenced by institutional and social practices which deem it to be unclean and impure. In a country such as India, several customs and traditions reinforce secrecy and shame about menstruation. As such, scholars advocate the need to generate knowledge that can open opportunities to converse on the topic of menstruation and understand issues related to bodily changes. Using a culture-centered approach, this study examined how college-going adult women from two cities in Northern India made sense of menstrual health. Data collection included 20 focus groups with 180 college-going women and interviews with 16 female family members. Participants discussed communication patterns surrounding menstrual health and how they uphold, challenge, and change social practices. Specifically, participants reflected on how they were communicated to about their menstrual health with underpinnings of secrecy and shame and how the influence of current opportunities for openness encourage them to anticipate positive change. Theoretical and practical implications for studying communication around menstruation in diverse cultural contexts are discussed.


Assuntos
Menstruação , Tabu , Adulto , Feminino , Humanos , Grupos Focais , Cultura , Índia , Conhecimentos, Atitudes e Prática em Saúde
2.
Langmuir ; 38(28): 8502-8512, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35797452

RESUMO

The crystallization behavior of commercial mono- and diglycerides (MDG) in paraffin oil is studied to develop an in-depth understanding of the polymorphic transitions useful for the physical stability of petroleum oil-based topical emulsions. Optical microscopy and differential scanning calorimetry measurements showed the formation of plate-like and spherulite crystals at high and low temperatures, in sequence, while cooling a solution of MDG dissolved in oil. High-resolution NMR and X-ray scattering demonstrate that 1-monoglycerides (mixture of 1-glyceride monostearate and 1-glyceride monopalmitate) cocrystallize to an inverse-lamellar structure (Lα polymorph) that mainly forms plate-like crystals at a higher temperature. The Lα polymorph is seen to exist up to room temperature during the cooling process. At lower temperatures, 1,3-diglycerides (mixture of 1,3-glyceryl distearate and 1,3-glyceryl dipalmitate) crystallize into ß-polymorphs that form spherulites. The spherulites tend to assemble into elongated strands via aggregation, leading to the formation of a percolating network structure. The sizes of both types of crystals decrease with an increasing cooling rate, leading to a higher mechanical modulus due to the increased network connectivity of spherulites. In an emulsion, monoglycerides in the form of Lα polymorphs having plate-like crystal morphology show a higher affinity to the polar liquid/oil interface, thereby providing better interfacial stability compared to the spherulitic ß-polymorphs. However, diglycerides in the form of spherulites form bulk network structures which provide network stabilization to the suspended droplets. This work demonstrates that MDG, a commercially available ingredient that combines the differential functionality of monoglycerides and diglycerides, is an effective, bifunctional, emulsifying agent for petrolatum-based topical emulsions.

3.
Langmuir ; 38(11): 3422-3433, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35254072

RESUMO

The hydrodynamic behavior of fractal aggregates plays an important role in various applications in industry and the environment, and has been a topic of interest over the past several decades. Despite this, crucial aspects such as the relationship of the mobility radius, Rm, with respect to the fractal dimension, df, and the fluid penetration depth, δ, have largely remained unexplored. Herein, we examine these aspects across a wide range of df's through a Stokesian dynamics approach. It takes into account all orders of monomer-monomer interactions to construct the resistance matrix for the entire cluster, which is assumed to be rigid. Statistical fractals created using algorithms such as diffusion limited aggregation (DLA), cluster-cluster aggregation (CCA), tunable Monte Carlo algorithm, and a deterministic Vicsek fractal, with df varying from 1.76 to 3, and the number of monomers ranging from 20 to 10 240 are considered. While confirming the expected asymptotic cluster-size independence of the hydrodynamic ratio, ß = Rm/Rg (where Rg is the radius of gyration of the cluster), this study reveals a monotonically increasing trend for ß with increasing df. The decay of the fluid velocity within the aggregate is quantified via the concept of penetration depth (δ). Analysis shows that the dimensionless penetration depth (δ* = δ/Rg) approaches asymptotic constancy with respect to cluster size in contrast to a weak dependency of the form δ* ∼ (Rg/a)-(df - 1)/2, predicted by the mean-field theory (a being the monomer radius). Furthermore, the penetration depth is found to decrease rapidly, in an exponential manner, with increasing ß. This establishes a quantitative relationship between the resistance experienced by the cluster and the degree of penetration of fluid into it. The implications of these results are further discussed.

4.
Langmuir ; 37(41): 11949-11960, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34612656

RESUMO

Integration of molecular liquid crystals (LCs) with functional proteins can provide new class of materials for potential applications in optical biosensing. However, hydrophobic nematic LCs (length ∼ 1-2 nm) and hydrophilic proteins, size ∼ O (nm), do not intermix without chemical modification of at least one of them. Bioconjugation of proteins with a polyethylene glycol-based polymeric surfactant (PS) can provide a core-shell system that is sequestered within nonaqueous LC (4-cyano-4'-pentylbiphenyl) microdroplets. However, the nature of interactions between the components and detailed understanding of the resultant hybrid microstructure remains unclear. Here, using a combination of isothermal titration calorimetry (ITC), fluorescence microscopy, and infrared-imaging spectroscopy, we show that strong hydrophobic interactions between the LC and PS drives the sequestration of a myoglobin-PS (Mb-PS; dispersed in the aqueous phase) into the LC spherical microdroplets or even into a bulk LC phase. The average values of both, the binding constant and the standard molar enthalpy change, are increased by approximately a factor of 2.5 times when the unmodified Mb is conjugated to the PS. Small-angle X-ray scattering studies reveal that LC molecules act as a solvent for the Mb-PS conjugate; furthermore, the LC long-range order is disturbed due to mixing, as exemplified by the change in its coherence length from 8.9 to 5.7 nm. Detailed all-atomistic molecular dynamic simulations for a three-component PS-water-LC system show a change in interaction energy of -144 kJ mol-1 PS-1 upon the contact of PS chains (initially dispersed in water) with LC and agree with the ITC experiments.


Assuntos
Cristais Líquidos , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Proteínas , Tensoativos
5.
Acta Biomater ; 135: 356-367, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34469788

RESUMO

Directed cell migration plays a crucial role in physiological and pathological conditions. One important mechanical cue, known to influence cell migration, is the gradient of substrate elastic modulus (E). However, the cellular microenvironment is viscoelastic and hence the elastic property alone is not sufficient to define its material characteristics. To bridge this gap, in this study, we investigated the influence of the gradient of viscous property of the substrate, as defined by loss modulus (G″) on cell migration. We cultured human mesenchymal stem cells (hMSCs) on a collagen-coated polyacrylamide gel with constant storage modulus (G') but with a gradient in the loss modulus (G″). We found hMSCs to migrate from high to low loss modulus. We have termed this form of directional cellular migration as "Viscotaxis". We hypothesize that the high loss modulus regime deforms more due to creep in the long timescale when subjected to cellular traction. Such differential deformation drives the observed Viscotaxis. To verify our hypothesis, we disrupted the actomyosin contractility with myosin inhibitor blebbistatin and ROCK inhibitor Y27632, and found the directional migration to disappear. Further, such time-dependent creep of the high loss material should lead to lower traction, shorter lifetime of the focal adhesions, and dynamic cell morphology, which was indeed found to be the case. Together, findings in this paper highlight the importance of considering the viscous modulus while preparing stiffness-based substrates for the field of tissue engineering. STATEMENT OF SIGNIFICANCE: While the effect of substrate elastic modulus has been investigated extensively in the context of cell biology, the role of substrate viscoelasticity is poorly understood. This omission is surprising as our body is not elastic, but viscoelastic. Hence, the role of viscoelasticity needs to be investigated at depth in various cellular contexts. One such important context is cell migration. Cell migration is important in morphogenesis, immune response, wound healing, and cancer, to name a few. While it is known that cells migrate when presented with a substrate with a rigidity gradient, cellular behavior in response to viscoelastic gradient has never been investigated. The findings of this paper not only reveal a completely novel cellular taxis or directed migration, it also improves our understanding of cell mechanics significantly.


Assuntos
Células-Tronco Mesenquimais , Movimento Celular , Módulo de Elasticidade , Adesões Focais , Humanos , Viscosidade
6.
Soft Matter ; 16(47): 10657-10666, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33084725

RESUMO

Uninterrupted transport of waxy crude oil through pipelines remains a pressing concern for the petroleum industry. When the ambient temperature falls below the pour point of the crude, deposition of wax particles may lead to complete blockage of the pipeline. We demonstrate that the application of a DC electric field to waxy crude below its pour point can effectively break the wax network and also reduce the viscosity by up to two orders of magnitude. We have studied the dynamics of the change in viscosity during and after application of an electric field. Three regimes are observed. First is the induction regime, where viscous stresses dominate and the viscosity remains unchanged. During the intermediate and final regimes, the decrease in viscosity follows first order kinetics with rate constants proportional to the strength of the electric field and to the square of the strength, respectively. Microscopic evidence shows that some network connections break during the intermediate regime, whereas in the final regime, further fragmentation of the pieces of the broken network occurs. This is accompanied by aggregation of fine wax fragments. After cessation of the field, the viscosity increases gradually. The rate and the extent of recovery of viscosity depend only on the value of viscosity at the point of cessation of the field. That the breakage of the network occurs, even in the absence of shear, has been demonstrated. Through measurement of the dielectric constants and conductivities of the crude oil and its component phases, we have shown that the wax network experiences compressive Maxwell stress, which is dominated by the electric field within the wax particles.

8.
Biotechnol Bioeng ; 112(7): 1281-96, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25899427

RESUMO

Aquacultures of microalgae are frontrunners for photosynthetic capture of CO2 from flue gases. Expedient implementation mandates coupling of microalgal CO2 capture with synthesis of fuels and organic products, so as to derive value from biomass. An integrated biorefinery complex houses a biomass growth and harvesting area and a refining zone for conversion to product(s) and separation to desired purity levels. As growth and downstream options require energy and incur loss of carbon, put together, the loop must be energy positive, carbon negative, or add substantial value. Feasibility studies can, thus, aid the choice from among the rapidly evolving technological options, many of which are still in the early phases of development. We summarize basic engineering calculations for the key steps of a biorefining loop where flue gases from a thermal power station are captured using microalgal biomass along with subsequent options for conversion to fuel or value added products. An assimilation of findings from recent laboratory and pilot-scale experiments and life cycle analysis (LCA) studies is presented as carbon and energy yields for growth and harvesting of microalgal biomass and downstream options. Of the biorefining options, conversion to the widely studied biofuel, ethanol, and manufacture of the platform chemical, succinic acid are presented. Both processes yield specific products and do not demand high-energy input but entail 60-70% carbon loss through fermentative respiration. Thermochemical conversions, on the other hand, have smaller carbon and energy losses but yield a mixture of products.


Assuntos
Biocombustíveis , Produtos Biológicos/metabolismo , Biotecnologia/métodos , Dióxido de Carbono/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo
9.
Nat Mater ; 10(11): 838-43, 2011 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-21946611

RESUMO

Soft particle glasses form a broad family of materials made of deformable particles, as diverse as microgels, emulsion droplets, star polymers, block copolymer micelles and proteins, which are jammed at volume fractions where they are in contact and interact via soft elastic repulsions. Despite a great variety of particle elasticity, soft glasses have many generic features in common. They behave like weak elastic solids at rest but flow very much like liquids above the yield stress. This unique feature is exploited to process high-performance coatings, solid inks, ceramic pastes, textured food and personal care products. Much of the understanding of these materials at volume fractions relevant in applications is empirical, and a theory connecting macroscopic flow behaviour to microstructure and particle properties remains a formidable challenge. Here we propose a micromechanical three-dimensional model that quantitatively predicts the nonlinear rheology of soft particle glasses. The shear stress and the normal stress differences depend on both the dynamic pair distribution function and the solvent-mediated EHD interactions among the deformed particles. The predictions, which have no adjustable parameters, are successfully validated with experiments on concentrated emulsions and polyelectrolyte microgel pastes, highlighting the universality of the flow properties of soft glasses. These results provide a framework for designing new soft additives with a desired rheological response.

10.
Inorg Chem ; 37(6): 1191-1201, 1998 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-11670323

RESUMO

The effects of incorporating chloro groups at all ortho positions of a diphenylethyne linker that bridges the zinc and free base (Fb) components of a porphyrin dimer (ZnFbB(Cl(4))) have been investigated in detail via various static and time-resolved spectroscopic methods. The excited-state energy-transfer rate in ZnFbB(Cl(4)) ((134 ps)(-)(1)) is 5-fold slower than that in the corresponding dimer having an unsubstituted linker (ZnFbU, (24 ps)(-)(1)) but is only modestly slower than that in the dimer having o-methyl groups on the linker (ZnFbB(CH(3))(4), (115 ps)(-)(1)). The ground-state hole/electron-hopping rates in the oxidized bis-Zn analogues of all three dimers are much slower than the excited-state energy-transfer rates. There is no discernible difference between the hole/electron-hopping rates in the o-chloro- and o-methyl-substituted arrays. The similar ground- and excited-state dynamics observed for the o-chloro- and o-methyl-substituted arrays is attributed to the dominance of torsional constraints in mediating the extent of through-bond electronic communication. These constraints attenuate intradimer communication by restricting the rotation toward coplanarity of the phenyl rings of the linker and the porphyrin rings. Thus, the o-chloro groups on the linker decrease electronic communication via a steric, rather than purely electronic, mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA