Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
2.
Cell Rep Med ; 5(3): 101469, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508137

RESUMO

Fibrolamellar carcinoma (FLC) is a liver tumor with a high mortality burden and few treatment options. A promising therapeutic vulnerability in FLC is its driver mutation, a conserved DNAJB1-PRKACA gene fusion that could be an ideal target neoantigen for immunotherapy. In this study, we aim to define endogenous CD8 T cell responses to this fusion in FLC patients and evaluate fusion-specific T cell receptors (TCRs) for use in cellular immunotherapies. We observe that fusion-specific CD8 T cells are rare and that FLC patient TCR repertoires lack large clusters of related TCR sequences characteristic of potent antigen-specific responses, potentially explaining why endogenous immune responses are insufficient to clear FLC tumors. Nevertheless, we define two functional fusion-specific TCRs, one of which has strong anti-tumor activity in vivo. Together, our results provide insights into the fragmented nature of neoantigen-specific repertoires in humans and indicate routes for clinical development of successful immunotherapies for FLC.


Assuntos
Carcinoma Hepatocelular , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/patologia , Terapia Baseada em Transplante de Células e Tecidos , Proteínas de Choque Térmico HSP40/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética
3.
PLoS Genet ; 20(3): e1011216, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512964

RESUMO

Fibrolamellar carcinoma (FLC) is a rare liver cancer that disproportionately affects adolescents and young adults. Currently, no standard of care is available and there remains a dire need for new therapeutics. Most patients harbor the fusion oncogene DNAJB1-PRKACA (DP fusion), but clinical inhibitors are not yet developed and it is critical to identify downstream mediators of FLC pathogenesis. Here, we identify long noncoding RNA LINC00473 among the most highly upregulated genes in FLC tumors and determine that it is strongly suppressed by RNAi-mediated inhibition of the DP fusion in FLC tumor epithelial cells. We show by loss- and gain-of-function studies that LINC00473 suppresses apoptosis, increases the expression of FLC marker genes, and promotes FLC growth in cell-based and in vivo disease models. Mechanistically, LINC00473 plays an important role in promoting glycolysis and altering mitochondrial activity. Specifically, LINC00473 knockdown leads to increased spare respiratory capacity, which indicates mitochondrial fitness. Overall, we propose that LINC00473 could be a viable target for this devastating disease.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Adolescente , Humanos , Adulto Jovem , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Neoplasias Hepáticas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
Genomics ; 116(2): 110805, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309446

RESUMO

The gut plays a key role in regulating metabolic health. Dietary factors disrupt intestinal physiology and contribute to obesity and diabetes, whereas bariatric procedures such as vertical sleeve gastrectomy (VSG) cause gut adaptations that induce robust metabolic improvements. However, our understanding of these adaptations at the cellular and molecular levels remains limited. In a validated murine model, we leverage single-cell transcriptomics to determine how VSG impacts different cell lineages of the small intestinal epithelium. We define cell type-specific genes and pathways that VSG rescues from high-fat diet perturbation and characterize additional rescue-independent changes brought about by VSG. We show that Paneth cells have increased expression of the gut peptide Reg3g after VSG. We also find that VSG restores pathways pertaining to mitochondrial respiration and cellular metabolism, especially within crypt-based cells. Overall, our study provides unprecedented molecular resolution of VSG's therapeutic effects on the gut epithelium.


Assuntos
Gastrectomia , Obesidade , Camundongos , Humanos , Animais , Gastrectomia/métodos , Mucosa Intestinal/metabolismo , Dieta Hiperlipídica/efeitos adversos
5.
JCI Insight ; 9(4)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385744

RESUMO

Crohn's disease (CD) is a chronic inflammatory gut disorder. Molecular mechanisms underlying the clinical heterogeneity of CD remain poorly understood. MicroRNAs (miRNAs) are important regulators of gut physiology, and several have been implicated in the pathogenesis of adult CD. However, there is a dearth of large-scale miRNA studies for pediatric CD. We hypothesized that specific miRNAs uniquely mark pediatric CD. We performed small RNA-Seq of patient-matched colon and ileum biopsies from treatment-naive pediatric patients with CD (n = 169) and a control cohort (n = 108). Comprehensive miRNA analysis revealed 58 miRNAs altered in pediatric CD. Notably, multinomial logistic regression analysis revealed that index levels of ileal miR-29 are strongly predictive of severe inflammation and stricturing. Transcriptomic analyses of transgenic mice overexpressing miR-29 show a significant reduction of the tight junction protein gene Pmp22 and classic Paneth cell markers. The dramatic loss of Paneth cells was confirmed by histologic assays. Moreover, we found that pediatric patients with CD with elevated miR-29 exhibit significantly lower Paneth cell counts, increased inflammation scores, and reduced levels of PMP22. These findings strongly indicate that miR-29 upregulation is a distinguishing feature of pediatric CD, highly predictive of severe phenotypes, and associated with inflammation and Paneth cell loss.


Assuntos
Doença de Crohn , MicroRNAs , Adulto , Animais , Camundongos , Humanos , Criança , Doença de Crohn/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Inflamação
6.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36993710

RESUMO

Attention is required for most higher-order cognitive functions. Prior studies have revealed functional roles for the prefrontal cortex and its extended circuits to enabling attention, but the underlying molecular processes and their impacts on cellular and circuit function remain poorly understood. To develop insights, we here took an unbiased forward genetics approach to identify single genes of large effect on attention. We studied 200 genetically diverse mice on measures of pre-attentive processing and through genetic mapping identified a small locus on chromosome 13 (95%CI: 92.22-94.09 Mb) driving substantial variation (19%) in this trait. Further characterization of the locus revealed a causative gene, Homer1, encoding a synaptic protein, where down-regulation of its short isoforms in prefrontal cortex (PFC) during early postnatal development led to improvements in multiple measures of attention in the adult. Subsequent mechanistic studies revealed that prefrontal Homer1 down-regulation is associated with GABAergic receptor up-regulation in those same cells. This enhanced inhibitory influence, together with dynamic neuromodulatory coupling, led to strikingly low PFC activity at baseline periods of the task but targeted elevations at cue onset, predicting short-latency correct choices. Notably high-Homer1, low-attentional performers, exhibited uniformly elevated PFC activity throughout the task. We thus identify a single gene of large effect on attention - Homer1 - and find that it improves prefrontal inhibitory tone and signal-to-noise (SNR) to enhance attentional performance. A therapeutic strategy focused on reducing prefrontal activity and increasing SNR, rather than uniformly elevating PFC activity, may complement the use of stimulants to improve attention.

7.
Environ Health Perspect ; 131(12): 127021, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38150313

RESUMO

BACKGROUND: Chronic exposure to inorganic arsenic (iAs) has been associated with type 2 diabetes (T2D). However, potential sex divergence and the underlying mechanisms remain understudied. iAs is not metabolized uniformly across species, which is a limitation of typical exposure studies in rodent models. The development of a new "humanized" mouse model overcomes this limitation. In this study, we leveraged this model to study sex differences in the context of iAs exposure. OBJECTIVES: The aim of this study was to determine if males and females exhibit different liver and adipose molecular profiles and metabolic phenotypes in the context of iAs exposure. METHODS: Our study was performed on wild-type (WT) 129S6/SvEvTac and humanized arsenic +3 methyl transferase (human AS3MT) 129S6/SvEvTac mice treated with 400 ppb of iAs via drinking water ad libitum. After 1 month, mice were sacrificed and the liver and gonadal adipose depots were harvested for iAs quantification and sequencing-based microRNA and gene expression analysis. Serum blood was collected for fasting blood glucose, fasting plasma insulin, and homeostatic model assessment for insulin resistance (HOMA-IR). RESULTS: We detected sex divergence in liver and adipose markers of diabetes (e.g., miR-34a, insulin signaling pathways, fasting blood glucose, fasting plasma insulin, and HOMA-IR) only in humanized (not WT) mice. In humanized female mice, numerous genes that promote insulin sensitivity and glucose tolerance in both the liver and adipose are elevated compared to humanized male mice. We also identified Klf11 as a putative master regulator of the sex divergence in gene expression in humanized mice. DISCUSSION: Our study underscored the importance of future studies leveraging the humanized mouse model to study iAs-associated metabolic disease. The findings suggested that humanized males are at increased risk for metabolic dysfunction relative to humanized females in the context of iAs exposure. Future investigations should focus on the detailed mechanisms that underlie the sex divergence. https://doi.org/10.1289/EHP12785.


Assuntos
Arsênio , Arsenicais , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Feminino , Masculino , Camundongos , Humanos , Animais , Arsênio/análise , Glicemia/análise , Diabetes Mellitus Tipo 2/induzido quimicamente , Insulina , Obesidade , Metiltransferases/genética
8.
EMBO Rep ; 24(12): e57339, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37929643

RESUMO

Breast adipose tissue is an important contributor to the obesity-breast cancer link. Extracellular vesicles (EVs) are nanosized particles containing selective cargo, such as miRNAs, that act locally or circulate to distant sites to modulate target cell functions. Here, we find that long-term education of breast cancer cells with EVs obtained from breast adipose tissue of women who are overweight or obese (O-EVs) results in increased proliferation. RNA-seq analysis of O-EV-educated cells demonstrates increased expression of genes involved in oxidative phosphorylation, such as ATP synthase and NADH: ubiquinone oxidoreductase. O-EVs increase respiratory complex protein expression, mitochondrial density, and mitochondrial respiration in tumor cells. The mitochondrial complex I inhibitor metformin reverses O-EV-induced cell proliferation. Several miRNAs-miR-155-5p, miR-10a-3p, and miR-30a-3p-which promote mitochondrial respiration and proliferation, are enriched in O-EVs relative to EVs from lean women. O-EV-induced proliferation and mitochondrial activity are associated with stimulation of the Akt/mTOR/P70S6K pathway, and are reversed upon silencing of P70S6K. This study reveals a new facet of the obesity-breast cancer link with human breast adipose tissue-derived EVs causing metabolic reprogramming of breast cancer cells.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , MicroRNAs , Humanos , Feminino , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Tecido Adiposo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/metabolismo , Neoplasias da Mama/metabolismo , Proteínas/metabolismo , Vesículas Extracelulares/metabolismo
9.
Commun Biol ; 6(1): 1006, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789172

RESUMO

Mammary cancer incidence varies greatly across species and underlying mechanisms remain elusive. We previously showed that mammosphere-derived epithelial cells from species with low mammary cancer incidence, such as horses, respond to carcinogen 7, 12-Dimethylbenz(a)anthracene-induced DNA damage by undergoing apoptosis, a postulated anti-cancer mechanism. Additionally, we found that miR-214-3p expression in mammosphere-derived epithelial cells is lower in mammary cancer-resistant as compared to mammary cancer-susceptible species. Here we show that increasing miR-214 expression and decreasing expression of its target gene nuclear factor kappa B subunit 1 in mammosphere-derived epithelial cells from horses abolishes 7,12-Dimethylbenz(a)anthracene-induced apoptosis. A direct interaction of miR-214-3p with another target gene, unc-5 netrin receptor A, is also demonstrated. We propose that relatively low levels of miR-214 in mammosphere-derived epithelial cells from mammals with low mammary cancer incidence, allow for constitutive gene nuclear factor kappa B subunit 1 expression and apoptosis in response to 7, 12-Dimethylbenz(a)anthracene. Better understanding of the mechanisms regulating cellular responses to carcinogens improves our overall understanding of mammary cancer resistance mechanisms.


Assuntos
MicroRNAs , Neoplasias , Animais , Cavalos , Carcinógenos/toxicidade , Carcinógenos/metabolismo , 9,10-Dimetil-1,2-benzantraceno/toxicidade , 9,10-Dimetil-1,2-benzantraceno/metabolismo , NF-kappa B/metabolismo , Células Epiteliais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose , Antracenos/metabolismo , Antracenos/farmacologia , Mamíferos , Neoplasias/metabolismo
10.
BMC Genomics ; 24(1): 641, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884859

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are important post-transcriptional gene regulators controlling cellular lineage specification and differentiation during embryonic development, including the gastrointestinal system. However, miRNA-mediated regulatory mechanisms involved in early embryonic development of human small intestine (SI) remains underexplored. To explore candidate roles for miRNAs in prenatal SI lineage specification in humans, we used a multi-omic analysis strategy in a directed differentiation model that programs human pluripotent stem cells toward the SI lineage. RESULTS: We leveraged small RNA-seq to define the changing miRNA landscape, and integrated chromatin run-on sequencing (ChRO-seq) and RNA-seq to define genes subject to significant post-transcriptional regulation across the different stages of differentiation. Small RNA-seq profiling revealed temporal dynamics of miRNA signatures across different developmental events of the model, including definitive endoderm formation, SI lineage specification and SI regional patterning. Our multi-omic, integrative analyses showed further that the elevation of miR-182 and reduction of miR-375 are key events during SI lineage specification. We demonstrated that loss of miR-182 leads to an increase in the foregut master marker SOX2. We also used single-cell analyses in murine adult intestinal crypts to support a life-long role for miR-375 in the regulation of Zfp36l2. Finally, we uncovered opposing roles of SMAD4 and WNT signaling in regulating miR-375 expression during SI lineage specification. Beyond the mechanisms highlighted in this study, we also present a web-based application for exploration of post-transcriptional regulation and miRNA-mediated control in the context of early human SI development. CONCLUSION: The present study uncovers a novel facet of miRNAs in regulating prenatal SI development. We leveraged multi-omic, systems biology approaches to discover candidate miRNA regulators associated with early SI developmental events in a human organoid model. In this study, we highlighted miRNA-mediated post-transcriptional regulation relevant to the event of SI lineage specification. The candidate miRNA regulators that we identified for the other stages of SI development also warrant detailed characterization in the future.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs , Humanos , Animais , Camundongos , Diferenciação Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Intestino Delgado/metabolismo , Organoides/metabolismo
12.
NPJ Regen Med ; 8(1): 40, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528116

RESUMO

A network of co-hepato/pancreatic stem/progenitors exists in pigs and humans in Brunner's Glands in the submucosa of the duodenum, in peribiliary glands (PBGs) of intrahepatic and extrahepatic biliary trees, and in pancreatic duct glands (PDGs) of intrapancreatic biliary trees, collectively supporting hepatic and pancreatic regeneration postnatally. The network is found in humans postnatally throughout life and, so far, has been demonstrated in pigs postnatally at least through to young adulthood. These stem/progenitors in vivo in pigs are in highest numbers in Brunner's Glands and in PDGs nearest the duodenum, and in humans are in Brunner's Glands and in PBGs in the hepato/pancreatic common duct, a duct missing postnatally in pigs. Elsewhere in PDGs in pigs and in all PDGs in humans are only committed unipotent or bipotent progenitors. Stem/progenitors have genetic signatures in liver/pancreas-related RNA-seq data based on correlation, hierarchical clustering, differential gene expression and principal component analyses (PCA). Gene expression includes representative traits of pluripotency genes (SOX2, OCT4), endodermal transcription factors (e.g. SOX9, SOX17, PDX1), other stem cell traits (e.g. NCAM, CD44, sodium iodide symporter or NIS), and proliferation biomarkers (Ki67). Hepato/pancreatic multipotentiality was demonstrated by the stem/progenitors' responses under distinct ex vivo conditions or in vivo when patch grafted as organoids onto the liver versus the pancreas. Therefore, pigs are logical hosts for translational/preclinical studies for cell therapies with these stem/progenitors for hepatic and pancreatic dysfunctions.

13.
Matrix Biol ; 121: 194-216, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37402431

RESUMO

Fibrolamellar carcinomas (FLCs), lethal tumors occurring in children to young adults, have genetic signatures implicating derivation from biliary tree stem cell (BTSC) subpopulations, co-hepato/pancreatic stem cells, involved in hepatic and pancreatic regeneration. FLCs and BTSCs express pluripotency genes, endodermal transcription factors, and stem cell surface, cytoplasmic and proliferation biomarkers. The FLC-PDX model, FLC-TD-2010, is driven ex vivo to express pancreatic acinar traits, hypothesized responsible for this model's propensity for enzymatic degradation of cultures. A stable ex vivo model of FLC-TD-2010 was achieved using organoids in serum-free Kubota's Medium (KM) supplemented with 0.1% hyaluronans (KM/HA). Heparins (10 ng/ml) caused slow expansion of organoids with doubling times of ∼7-9 days. Spheroids, organoids depleted of mesenchymal cells, survived indefinitely in KM/HA in a state of growth arrest for more than 2 months. Expansion was restored with FLCs co-cultured with mesenchymal cell precursors in a ratio of 3:7, implicating paracrine signaling. Signals identified included FGFs, VEGFs, EGFs, Wnts, and others, produced by associated stellate and endothelial cell precursors. Fifty-three, unique heparan sulfate (HS) oligosaccharides were synthesized, assessed for formation of high affinity complexes with paracrine signals, and each complex screened for biological activity(ies) on organoids. Ten distinct HS-oligosaccharides, all 10-12 mers or larger, and in specific paracrine signal complexes elicited particular biological responses. Of note, complexes of paracrine signals and 3-O sulfated HS-oligosaccharides elicited slowed growth, and with Wnt3a, elicited growth arrest of organoids for months. If future efforts are used to prepare HS-oligosaccharides resistant to breakdown in vivo, then [paracrine signal-HS-oligosaccharide] complexes are potential therapeutic agents for clinical treatments of FLCs, an exciting prospect for a deadly disease.


Assuntos
Carcinoma , Sulfatos , Criança , Humanos , Comunicação Parácrina , Heparitina Sulfato/metabolismo , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo
14.
Diabetes ; 72(10): 1460-1469, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37494660

RESUMO

Verapamil promotes functional ß-cell mass and improves glucose homeostasis in diabetic mice and humans with type 1 diabetes (T1D). Now, our global proteomics analysis of serum from subjects with T1D at baseline and after 1 year of receiving verapamil or placebo revealed IGF-I as a protein with significantly changed abundance over time. IGF-I, which promotes ß-cell survival and insulin secretion, decreased during disease progression, and this decline was blunted by verapamil. In addition, we found that verapamil reduces ß-cell expression of IGF-binding protein 3 (IGFBP3), whereas IGFBP3 was increased in human islets exposed to T1D-associated cytokines and in diabetic NOD mouse islets. IGFBP3 binds IGF-I and blocks its downstream signaling, which has been associated with increased ß-cell apoptosis and impaired glucose homeostasis. Consistent with the downregulation of IGFBP3, we have now discovered that verapamil increases ß-cell IGF-I signaling and phosphorylation/activation of the IGF-I receptor (IGF1R). Moreover, we found that thioredoxin-interacting protein (TXNIP), a proapoptotic factor downregulated by verapamil, promotes IGFBP3 expression and inhibits the phosphorylation/activation of IGF1R. Thus, our results reveal IGF-I signaling as yet another previously unappreciated pathway affected by verapamil and TXNIP that may contribute to the beneficial verapamil effects in the context of T1D. ARTICLE HIGHLIGHTS: Verapamil prevents the decline of IGF-I in subjects with type 1 diabetes (T1D). Verapamil decreases the expression of ß-cell IGF-binding protein 3 (IGFBP3), whereas IGFBP3 is increased in human and mouse islets under T1D conditions. Verapamil promotes ß-cell IGF-I signaling by increasing phosphorylation of IGF-I receptor and its downstream effector AKT. Thioredoxin-interacting protein (TXNIP) increases IGFBP3 expression and inhibits the phosphorylation/activation of IGF1R in ß-cells. Regulation of IGFBP3 and IGF-I signaling by verapamil and TXNIP may contribute to the beneficial verapamil effects in the context of T1D.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Fator de Crescimento Insulin-Like I/metabolismo , Receptor IGF Tipo 1/metabolismo , Verapamil/farmacologia , Verapamil/uso terapêutico , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Camundongos Endogâmicos NOD , Tiorredoxinas/metabolismo , Glucose
15.
Life Sci ; 328: 121859, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37315838

RESUMO

AIMS: Renalase, a key mediator of cross-talk between kidneys and sympathetic nervous system, exerts protective roles in various cardiovascular/renal disease states. However, molecular mechanisms underpinning renalase gene expression remain incompletely understood. Here, we sought to identify the key molecular regulators of renalase under basal/catecholamine-excess conditions. MATERIALS AND METHODS: Identification of the core promoter domain of renalase was carried out by promoter-reporter assays in N2a/HEK-293/H9c2 cells. Computational analysis of the renalase core promoter domain, over-expression of cyclic-AMP-response-element-binding-protein (CREB)/dominant negative mutant of CREB, ChIP assays were performed to determine the role of CREB in transcription regulation. Role of the miR-29b-mediated-suppression of renalase was validated in-vivo by using locked-nucleic-acid-inhibitors of miR-29. qRT-PCR and Western-blot analyses measured the expression of renalase, CREB, miR-29b and normalization controls in cell lysates/ tissue samples under basal/epinephrine-treated conditions. KEY FINDINGS: CREB, a downstream effector in epinephrine signaling, activated renalase expression via its binding to the renalase-promoter. Physiological doses of epinephrine and isoproterenol enhanced renalase-promoter activity and endogenous renalase protein level while propranolol diminished the promoter activity and endogenous renalase protein level indicating a potential role of beta-adrenergic receptor in renalase gene regulation. Multiple animal models (acute exercise, genetically hypertensive/stroke-prone mice/rat) displayed directionally-concordant expression of CREB and renalase. Administration of miR-29b inhibitor in mice upregulated endogenous renalase expression. Moreover, epinephrine treatment down-regulated miR-29b promoter-activity/transcript levels. SIGNIFICANCE: This study provides evidence for renalase gene regulation by concomitant transcriptional activation via CREB and post-transcriptional attenuation via miR-29b under excess epinephrine conditions. These findings have implications for disease states with dysregulated catecholamines.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , MicroRNAs , Ratos , Humanos , Camundongos , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Catecolaminas , Células HEK293 , MicroRNAs/genética , Elementos de Resposta , Epinefrina/farmacologia , Expressão Gênica
16.
bioRxiv ; 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36798307

RESUMO

Breast adipose tissue is an important contributor to the obesity-breast cancer link. Dysregulated cell metabolism is now an accepted hallmark of cancer. Extracellular vesicles (EVs) are nanosized particles containing selective cargo, such as miRNAs, that act locally or circulate to distant sites to modulate target cell functions. Here, we found that long-term education of breast cancer cells (MCF7, T47D) with EVs from breast adipose tissue of women who are overweight or obese (O-EVs) leads to sustained increased proliferative potential. RNA-Seq of O-EV-educated cells demonstrates increased expression of genes, such as ATP synthase and NADH: ubiquinone oxidoreductase, involved in oxidative phosphorylation. O-EVs increase respiratory complex protein expression, mitochondrial density, and mitochondrial respiration in tumor cells. Mitochondrial complex I inhibitor, metformin, reverses O-EV-induced cell proliferation. Several miRNAs, miR-155-5p, miR-10a-3p, and miR-30a-3p, which promote mitochondrial respiration and proliferation, are enriched in O-EVs relative to EVs from lean women. O-EV-induced proliferation and mitochondrial activity are associated with stimulation of the Akt/mTOR/P70S6K pathway, and are reversed upon silencing of P70S6K. This study reveals a new facet of the obesity-breast cancer link with human breast adipose tissue-derived EVs causing the metabolic reprogramming of ER+ breast cancer cells.

17.
Proc Natl Acad Sci U S A ; 120(7): e2206797120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36757889

RESUMO

Genetic studies have identified ≥240 loci associated with the risk of type 2 diabetes (T2D), yet most of these loci lie in non-coding regions, masking the underlying molecular mechanisms. Recent studies investigating mRNA expression in human pancreatic islets have yielded important insights into the molecular drivers of normal islet function and T2D pathophysiology. However, similar studies investigating microRNA (miRNA) expression remain limited. Here, we present data from 63 individuals, the largest sequencing-based analysis of miRNA expression in human islets to date. We characterized the genetic regulation of miRNA expression by decomposing the expression of highly heritable miRNAs into cis- and trans-acting genetic components and mapping cis-acting loci associated with miRNA expression [miRNA-expression quantitative trait loci (eQTLs)]. We found i) 84 heritable miRNAs, primarily regulated by trans-acting genetic effects, and ii) 5 miRNA-eQTLs. We also used several different strategies to identify T2D-associated miRNAs. First, we colocalized miRNA-eQTLs with genetic loci associated with T2D and multiple glycemic traits, identifying one miRNA, miR-1908, that shares genetic signals for blood glucose and glycated hemoglobin (HbA1c). Next, we intersected miRNA seed regions and predicted target sites with credible set SNPs associated with T2D and glycemic traits and found 32 miRNAs that may have altered binding and function due to disrupted seed regions. Finally, we performed differential expression analysis and identified 14 miRNAs associated with T2D status-including miR-187-3p, miR-21-5p, miR-668, and miR-199b-5p-and 4 miRNAs associated with a polygenic score for HbA1c levels-miR-216a, miR-25, miR-30a-3p, and miR-30a-5p.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , MicroRNAs , Humanos , MicroRNAs/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Hemoglobinas Glicadas , Ilhotas Pancreáticas/metabolismo , Locos de Características Quantitativas/genética
18.
Elife ; 122023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36692000

RESUMO

Genetic alterations that activate protein kinase A (PKA) are found in many tumor types. Yet, their downstream oncogenic signaling mechanisms are poorly understood. We used global phosphoproteomics and kinase activity profiling to map conserved signaling outputs driven by a range of genetic changes that activate PKA in human cancer. Two signaling networks were identified downstream of PKA: RAS/MAPK components and an Aurora Kinase A (AURKA)/glycogen synthase kinase (GSK3) sub-network with activity toward MYC oncoproteins. Findings were validated in two PKA-dependent cancer models: a novel, patient-derived fibrolamellar carcinoma (FLC) line that expresses a DNAJ-PKAc fusion and a PKA-addicted melanoma model with a mutant type I PKA regulatory subunit. We identify PKA signals that can influence both de novo translation and stability of the proto-oncogene c-MYC. However, the primary mechanism of PKA effects on MYC in our cell models was translation and could be blocked with the eIF4A inhibitor zotatifin. This compound dramatically reduced c-MYC expression and inhibited FLC cell line growth in vitro. Thus, targeting PKA effects on translation is a potential treatment strategy for FLC and other PKA-driven cancers.


Assuntos
Carcinoma Hepatocelular , Proteínas Quinases Dependentes de AMP Cíclico , Humanos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Carcinoma Hepatocelular/genética , Transdução de Sinais , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linhagem Celular Tumoral
19.
Nat Biotechnol ; 41(4): 513-520, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36329320

RESUMO

Spatial transcriptomics reveals the spatial context of gene expression, but current methods are limited to assaying polyadenylated (A-tailed) RNA transcripts. Here we demonstrate that enzymatic in situ polyadenylation of RNA enables detection of the full spectrum of RNAs, expanding the scope of sequencing-based spatial transcriptomics to the total transcriptome. We demonstrate that our spatial total RNA-sequencing (STRS) approach captures coding RNAs, noncoding RNAs and viral RNAs. We apply STRS to study skeletal muscle regeneration and viral-induced myocarditis. Our analyses reveal the spatial patterns of noncoding RNA expression with near-cellular resolution, identify spatially defined expression of noncoding transcripts in skeletal muscle regeneration and highlight host transcriptional responses associated with local viral RNA abundance. STRS requires adding only one step to the widely used Visium spatial total RNA-sequencing protocol from 10x Genomics, and thus could be easily adopted to enable new insights into spatial gene regulation and biology.


Assuntos
Poliadenilação , Transcriptoma , Transcriptoma/genética , Poliadenilação/genética , RNA Mensageiro/genética , Perfilação da Expressão Gênica/métodos , RNA Viral/genética
20.
J Hepatol ; 78(1): 165-179, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36089156

RESUMO

BACKGROUND & AIMS: Common precursors for the liver, biliary tree, and pancreas exist at an early stage of development in the definitive endoderm forming the foregut. We have identified and characterised endodermal stem/progenitor cells with regenerative potential persisting in the adult human duodenum. METHODS: Human duodena were obtained from organ donors, and duodenal submucosal gland cells were isolated after removal of the mucosa layer. Cells were cultured on plastic or as organoids and were transplanted into severe combined immunodeficient (SCID) mouse livers. RESULTS: In situ studies of submucosal glands in the human duodenum revealed cells expressing stem/progenitor cell markers that had unique phenotypic traits distinguishable from intestinal crypt cells. Genetic signature studies indicated that the cells are closer to biliary tree stem cells and to definitive endodermal cells than to adult hepatocytes, supporting the interpretation that they are endodermal stem/progenitor cells. In vitro, human duodenal submucosal gland cells demonstrated clonal growth, capability to form organoids, and ability to acquire functional hepatocyte traits. In vivo, transplanted cells engrafted into the livers of immunocompromised mice and differentiated to mature liver cells. In an experimental model of fatty liver, human duodenal submucosal gland cells were able to rescue hosts from liver damage by supporting repopulation and regeneration of the liver. CONCLUSIONS: A cell population with clonal growth and organoid formation capability, which has liver differentiation potency in vitro and in vivo in murine experimental models, is present within adult duodenal submucosal glands. These cells can be isolated, do not require reprogramming, and thus could potentially represent a novel cell source for regenerative medicine of the liver. IMPACT AND IMPLICATIONS: Cell therapies for liver disease could represent an option to support liver function, but the identification of sustainable and viable cell sources is critical. Here, we describe a cell population with organoid formation capability and liver-specific regenerative potential in submucosal glands of the human duodenum. Duodenal submucosal gland cells are isolated from adult organs, do not require reprogramming, and could rescue hepatocellular damage in preclinical models of chronic, but not acute, liver injury. Duodenal submucosal gland cells could represent a potential candidate cell source for regenerative medicine of the liver, but the determination of cell dose and toxicity is needed before clinical testing in humans.


Assuntos
Sistema Biliar , Hiperplasia Nodular Focal do Fígado , Adulto , Humanos , Camundongos , Animais , Camundongos SCID , Regeneração Hepática , Hepatócitos , Fígado/lesões , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA