Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(8): 1820-1835, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39099090

RESUMO

Neuropilin-1 acts as a coreceptor with vascular endothelial growth factor receptors to facilitate binding of its ligand, vascular endothelial growth factor. Neuropilin-1 also binds to heparan sulfate, but the functional significance of this interaction has not been established. A combinatorial library screening using heparin oligosaccharides followed by molecular dynamics simulations of a heparin tetradecasaccharide suggested a highly conserved binding site composed of amino acid residues extending across the b1 and b2 domains of murine neuropilin-1. Mutagenesis studies established the importance of arginine513 and lysine514 for binding of heparin to a recombinant form of Nrp1 composed of the a1, a2, b1, and b2 domains. Recombinant Nrp1 protein bearing R513A,K514A mutations showed a significant loss of heparin-binding, heparin-induced dimerization, and heparin-dependent thermal stabilization. Isothermal calorimetry experiments suggested a 1:2 complex of heparin tetradecasaccharide:Nrp1. To study the impact of altered heparin binding in vivo, a mutant allele of Nrp1 bearing the R513A,K514A mutations was created in mice (Nrp1D) and crossbred to Nrp1+/- mice to examine the impact of altered heparan sulfate binding. Analysis of tumor formation showed variable effects on tumor growth in Nrp1D/D mice, resulting in a frank reduction in tumor growth in Nrp1D/- mice. Expression of mutant Nrp1D protein was normal in tissues, suggesting that the reduction in tumor growth was due to the altered binding of heparin/heparan sulfate to neuropilin-1. These findings suggest that the interaction of neuropilin-1 with heparan sulfate modulates its stability and its role in tumor formation and growth.


Assuntos
Heparitina Sulfato , Neuropilina-1 , Neuropilina-1/metabolismo , Neuropilina-1/genética , Neuropilina-1/química , Animais , Heparitina Sulfato/metabolismo , Camundongos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Ligação Proteica , Sítios de Ligação , Camundongos Endogâmicos C57BL , Heparina/metabolismo , Heparina/química , Simulação de Dinâmica Molecular , Mutação
2.
Am J Physiol Cell Physiol ; 327(2): C372-C378, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38912739

RESUMO

Heparan sulfate proteoglycans are a family of glycoproteins that modulate cell signaling by binding growth factors and changing their bioavailability. Syndecans are a specific family of transmembrane heparan sulfate proteoglycans that regulate cell adhesion, migration, and signaling. In this review, we will summarize emerging evidence for the functions of syndecans in the normal and malignant blood systems and their microenvironments. More specifically, we detail the known functions of syndecans within normal hematopoietic stem cells. Furthermore, we discuss the functions of syndecans in hematological malignancies, including myeloid malignancies, lymphomas, and bleeding disorders. As normal and malignant hematopoietic cells require cues from their microenvironments to function, we also summarize the roles of syndecans in cells of the stromal, endothelial, and osteolineage compartments. Syndecan biology is a rapidly evolving field; a comprehensive understanding of these molecules and their place in the hematopoietic system promises to improve our grasp on disease processes and better predict the efficacies of growth factor-targeting therapies.


Assuntos
Células-Tronco Hematopoéticas , Nicho de Células-Tronco , Sindecanas , Humanos , Células-Tronco Hematopoéticas/metabolismo , Animais , Sindecanas/metabolismo , Sindecanas/genética , Transdução de Sinais , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Hematopoese/fisiologia
3.
Nat Commun ; 12(1): 6990, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848712

RESUMO

Ionizing radiation and chemotherapy deplete hematopoietic stem cells and damage the vascular niche wherein hematopoietic stem cells reside. Hematopoietic stem cell regeneration requires signaling from an intact bone marrow (BM) vascular niche, but the mechanisms that control BM vascular niche regeneration are poorly understood. We report that BM vascular endothelial cells secrete semaphorin 3 A (SEMA3A) in response to myeloablation and SEMA3A induces p53 - mediated apoptosis in BM endothelial cells via signaling through its receptor, Neuropilin 1 (NRP1), and activation of cyclin dependent kinase 5. Endothelial cell - specific deletion of Nrp1 or Sema3a or administration of anti-NRP1 antibody suppresses BM endothelial cell apoptosis, accelerates BM vascular regeneration and concordantly drives hematopoietic reconstitution in irradiated mice. In response to NRP1 inhibition, BM endothelial cells increase expression and secretion of the Wnt signal amplifying protein, R spondin 2. Systemic administration of anti - R spondin 2 blocks HSC regeneration and hematopoietic reconstitution which otherwise occurrs in response to NRP1 inhibition. SEMA3A - NRP1 signaling promotes BM vascular regression following myelosuppression and therapeutic blockade of SEMA3A - NRP1 signaling in BM endothelial cells accelerates vascular and hematopoietic regeneration in vivo.


Assuntos
Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Regeneração/fisiologia , Animais , Apoptose , Medula Óssea/patologia , Células da Medula Óssea , Quinase 5 Dependente de Ciclina/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Semaforina-3A/metabolismo , Transdução de Sinais , Transcriptoma , Proteínas Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA