Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 715: 149995, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38685185

RESUMO

Immune checkpoint inhibitors have significantly transformed the landscape of cancer therapy. Nevertheless, while these inhibitors are highly effective for certain patient groups, many do not benefit due to primary or acquired resistance. Specifically, these treatments often lack sufficient therapeutic efficacy against cancers with low antigenicity. Thus, the development of an effective strategy to overcome cancers with low antigenicity is imperative for advancing next-generation cancer immunotherapy. Here, we show that small molecule inhibitor of hematopoietic progenitor kinase 1 (HPK1) combined with programmed cell death ligand 1 (PD-L1) blockade can enhance T-cell response to tumor with low antigenicity. We found that treatment of OT-1 splenocytes with HPK1 inhibitor enhanced the activation of signaling molecules downstream of T-cell receptor provoked by low-affinity-antigen stimulation. Using an in vivo OT-1 T-cell transfer model, we demonstrated that combining the HPK1 inhibitor with the anti-PD-L1 antibody significantly suppressed the growth of tumors expressing low-affinity altered peptide ligand of chicken ovalbumin, while anti-PD-L1 antibody monotherapy was ineffective. Our findings offer crucial insights into the potential for overcoming tumors with low antigenicity by combining conventional immune checkpoint inhibitors with HPK1 inhibitor.


Assuntos
Antígeno B7-H1 , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Camundongos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Imunoterapia/métodos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Humanos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo
2.
Eur J Pharmacol ; 961: 176184, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944847

RESUMO

Augmenting T-cell activity is a promising approach to enhance the efficacy of cancer immunotherapy treatment. Hematopoietic progenitor kinase 1 (HPK1) is predominantly expressed in immune cells and negatively regulates T-cell receptor signaling. It is reported that inhibition of the kinase function of HPK1 results in tumor growth suppression by enhancing cancer immunity. Thus, developing HPK1 inhibitors has attracted considerable attention as a future cancer immunotherapy approach. However, despite recent progress in HPK1 biology and pharmacology, various challenges still remain, such as developing HPK1 inhibitors with favorable pharmacological profiles and identifying tumor characteristics that can be applied to define susceptibility to HPK1 inhibition. Here, we present the identification and pharmacological evaluation of DS21150768, a potent small-molecule HPK1 inhibitor with a novel chemical scaffold. DS21150768 shows remarkable inhibition of HPK1 kinase activity, and in vitro studies demonstrated its potent activity to enhance T-cell function. DS21150768 is orally bioavailable and shows sustained plasma exposure, which leads to enhanced cytokine responses in vivo. We conducted a comparison of the anti-tumor efficacy of DS21150768 alone or in combination with anti-PD-1 antibody in 12 different mouse cancer cell models, and observed that the treatments suppressed tumor growth in multiple models. Furthermore, Gene Set Enrichment Analysis demonstrated significant enrichment of immune-related gene signatures in the tumor models responsive to DS21150768 treatment. Our results provide a path forward for the future development of HPK1 inhibitors and fundamental insights into biomarkers of HPK1-targeted therapy.


Assuntos
Neoplasias , Camundongos , Animais , Neoplasias/tratamento farmacológico , Linfócitos T , Transdução de Sinais , Citocinas
3.
J Med Chem ; 66(1): 695-715, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36572866

RESUMO

Histone acetylation is a post-translational modification of histones that is catalyzed by histone acetyltransferases (HATs) and plays an essential role in cellular processes. The HAT domain of EP300/CBP has recently emerged as a potential drug target for cancer therapy. Here, we describe the identification of the novel, highly potent, and selective EP300/CBP HAT inhibitor DS-9300. Our optimization efforts using a structure-based drug design approach based on the cocrystal structures of the EP300 HAT domain in complex with compounds 2 and 3 led to the identification of compounds possessing low-nanomolar EP300 HAT inhibitory potency and the ability to inhibit cellular acetylation of histone H3K27. Optimization of the pharmacokinetic properties in this series resulted in compounds with excellent oral systemic exposure, and once-daily oral administration of 16 (DS-9300) demonstrated potent antitumor effects in a castrated VCaP xenograft mouse model without significant body weight loss.


Assuntos
Histona Acetiltransferases , Histonas , Humanos , Camundongos , Animais , Histonas/metabolismo , Histona Acetiltransferases/metabolismo , Acetilação , Fatores de Transcrição de p300-CBP , Proteína p300 Associada a E1A
4.
Sci Rep ; 11(1): 22406, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789778

RESUMO

Gpr19 encodes an evolutionarily conserved orphan G-protein-coupled receptor (GPCR) with currently no established physiological role in vivo. We characterized Gpr19 expression in the suprachiasmatic nucleus (SCN), the locus of the master circadian clock in the brain, and determined its role in the context of the circadian rhythm regulation. We found that Gpr19 is mainly expressed in the dorsal part of the SCN, with its expression fluctuating in a circadian fashion. A conserved cAMP-responsive element in the Gpr19 promoter was able to produce circadian transcription in the SCN. Gpr19-/- mice exhibited a prolonged circadian period and a delayed initiation of daily locomotor activity. Gpr19 deficiency caused the downregulation of several genes that normally peak during the night, including Bmal1 and Gpr176. In response to light exposure at night, Gpr19-/- mice had a reduced capacity for light-induced phase-delays, but not for phase-advances. This defect was accompanied by reduced response of c-Fos expression in the dorsal region of the SCN, while apparently normal in the ventral area of the SCN, in Gpr19-/- mice. Thus, our data demonstrate that Gpr19 is an SCN-enriched orphan GPCR with a distinct role in circadian regulation and may provide a potential target option for modulating the circadian clock.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas do Tecido Nervoso/metabolismo , Fotoperíodo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neurotransmissores/metabolismo , Corrida , Transdução de Sinais/genética , Núcleo Supraquiasmático/metabolismo , Animais , Comportamento Animal , Técnicas de Inativação de Genes/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas , Receptores Acoplados a Proteínas G/genética , Receptores de Neurotransmissores/genética
5.
Sci Rep ; 10(1): 4429, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157140

RESUMO

G-protein-coupled receptors (GPCRs) are important drug targets with diverse therapeutic applications. However, there are still more than a hundred orphan GPCRs, whose protein functions and biochemical features remain unidentified. Gpr176 encodes a class-A orphan GPCR that has a role in circadian clock regulation in mouse hypothalamus and is also implicated in human breast cancer transcriptional response. Here we show that Gpr176 is N-glycosylated. Peptide-N-glycosidase treatment of mouse hypothalamus extracts revealed that endogenous Gpr176 undergoes N-glycosylation. Using a heterologous expression system, we show that N-glycosylation occurs at four conserved asparagine residues in the N-terminal region of Gpr176. Deficient N-glycosylation due to mutation of these residues reduced the protein expression of Gpr176. At the molecular function level, Gpr176 has constitutive, agonist-independent activity that leads to reduced cAMP synthesis. Although deficient N-glycosylation did not compromise this intrinsic activity, the resultant reduction in protein expression was accompanied by attenuation of cAMP-repressive activity in the cells. We also demonstrate that human GPR176 is N-glycosylated. Importantly, missense variations in the conserved N-glycosylation sites of human GPR176 (rs1473415441; rs761894953) affected N-glycosylation and thereby attenuated protein expression and cAMP-repressive activity in the cells. We show that N-glycosylation is a prerequisite for the efficient protein expression of functional Gpr176/GPR176.


Assuntos
AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Sequência de Aminoácidos , Animais , Glicosídeo Hidrolases/metabolismo , Glicosilação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Processamento de Proteína Pós-Traducional , Homologia de Sequência , Transdução de Sinais
6.
Nat Commun ; 7: 10583, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26882873

RESUMO

G-protein-coupled receptors (GPCRs) participate in a broad range of physiological functions. A priority for fundamental and clinical research, therefore, is to decipher the function of over 140 remaining orphan GPCRs. The suprachiasmatic nucleus (SCN), the brain's circadian pacemaker, governs daily rhythms in behaviour and physiology. Here we launch the SCN orphan GPCR project to (i) search for murine orphan GPCRs with enriched expression in the SCN, (ii) generate mutant animals deficient in candidate GPCRs, and (iii) analyse the impact on circadian rhythms. We thereby identify Gpr176 as an SCN-enriched orphan GPCR that sets the pace of circadian behaviour. Gpr176 is expressed in a circadian manner by SCN neurons, and molecular characterization reveals that it represses cAMP signalling in an agonist-independent manner. Gpr176 acts independently of, and in parallel to, the Vipr2 GPCR, not through the canonical Gi, but via the unique G-protein subclass Gz.


Assuntos
Ritmo Circadiano , Receptores Acoplados a Proteínas G/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Núcleo Supraquiasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA