Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Psychiatry ; 92(12): 942-951, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36075764

RESUMO

BACKGROUND: Major depressive disorder is one of the most commonly diagnosed mental illnesses worldwide, with a higher prevalence in women than in men. Although currently available pharmacological therapeutics help many individuals, they are not effective for most. Animal models have been important for the discovery of molecular alterations in stress and depression, but difficulties in adapting animal models of depression for females has impeded progress in developing novel therapeutic treatments that may be more efficacious for women. METHODS: Using the California mouse social defeat model, we took a multidisciplinary approach to identify stress-sensitive molecular targets that have translational relevance for women. We determined the impact of stress on transcriptional profiles in male and female California mouse nucleus accumbens (NAc) and compared these results with data from postmortem samples of the NAc from men and women diagnosed with major depressive disorder. RESULTS: Our cross-species computational analyses identified Rgs2 (regulator of G protein signaling 2) as a transcript downregulated by social defeat stress in female California mice and in women with major depressive disorder. RGS2 plays a key role in signal regulation of neuropeptide and neurotransmitter receptors. Viral vector-mediated overexpression of Rgs2 in the NAc restored social approach and sucrose preference in stressed female California mice. CONCLUSIONS: These studies show that Rgs2 acting in the NAc has functional properties that translate to changes in anxiety- and depression-related behavior. Future studies should investigate whether targeting Rgs2 represents a novel target for treatment-resistant depression in women.


Assuntos
Transtorno Depressivo Maior , Núcleo Accumbens , Animais , Feminino , Masculino , Camundongos , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Estresse Psicológico , Modelos Animais de Doenças , Comportamento Animal , Comportamento Social , Camundongos Endogâmicos C57BL
2.
PeerJ ; 4: e2227, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547540

RESUMO

Parallelism is important because it reveals how inherently stochastic adaptation is. Even as we come to better understand evolutionary forces, stochasticity limits how well we can predict evolutionary outcomes. Here we sought to quantify parallelism and some of its underlying causes by adapting a bacteriophage (ID11) with nine different first-step mutations, each with eight-fold replication, for 100 passages. This was followed by whole-genome sequencing five isolates from each endpoint. A large amount of variation arose-281 mutational events occurred representing 112 unique mutations. At least 41% of the mutations and 77% of the events were adaptive. Within wells, populations generally experienced complex interference dynamics. The genome locations and counts of mutations were highly uneven: mutations were concentrated in two regulatory elements and three genes and, while 103 of the 112 (92%) of the mutations were observed in ≤4 wells, a few mutations arose many times. 91% of the wells and 81% of the isolates had a mutation in the D-promoter. Parallelism was moderate compared to previous experiments with this system. On average, wells shared 27% of their mutations at the DNA level and 38% when the definition of parallel change is expanded to include the same regulatory feature or residue. About half of the parallelism came from D-promoter mutations. Background had a small but significant effect on parallelism. Similarly, an analyses of epistasis between mutations and their ancestral background was significant, but the result was mostly driven by four individual mutations. A second analysis of epistasis focused on de novo mutations revealed that no isolate ever had more than one D-promoter mutation and that 56 of the 65 isolates lacking a D-promoter mutation had a mutation in genes D and/or E. We assayed time to lysis in four of these mutually exclusive mutations (the two most frequent D-promoter and two in gene D) across four genetic backgrounds. In all cases lysis was delayed. We postulate that because host cells were generally rare (i.e., high multiplicity of infection conditions developed), selection favored phage that delayed lysis to better exploit their current host (i.e., 'love the one you're with'). Thus, the vast majority of wells (at least 64 of 68, or 94%) arrived at the same phenotypic solution, but through a variety of genetic changes. We conclude that answering questions about the range of possible adaptive trajectories, parallelism, and the predictability of evolution requires attention to the many biological levels where the process of adaptation plays out.

3.
Physiol Genomics ; 45(15): 653-66, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23737534

RESUMO

The potential benefits of selenium (Se) supplementation are currently under investigation for prevention of certain cancers and treatment of neurological disorders. However, little is known concerning the response of the brain to increased dietary Se under conditions of Se sufficiency, despite the majority of Se supplementation trials occurring in healthy, Se sufficient subjects. We evaluated the transcriptional response of Se-dependent genes, selenoproteins and the genes necessary for their synthesis (the selenoproteome), in the zebrafish (Danio rerio) brain to supplementation with nutritionally relevant levels of dietary Se (sodium selenite) during conditions of assumed Se sufficiency. We first used a microarray approach to analyze the response of the brain selenoproteome to dietary Se supplementation for 14 days and then assessed the immediacy and time-scale transcriptional response of the brain selenoproteome to 1, 7, and 14 days of Se supplementation by quantitative real-time PCR (qRT-PCR). The microarray approach did not indicate large-scale influences of Se on the brain transcriptome as a whole or the selenoproteome specifically; only one nonselenoproteome gene (si:ch73-44m9.2) was significantly differentially expressed. Our qRT-PCR results, however, indicate that increases of dietary Se cause small, but significant transcriptional changes within the brain selenoproteome, even after only 1 day of supplementation. These responses were dynamic over a short period of supplementation in a manner highly dependent on sex and the duration of Se supplementation. In nutritional intervention studies, it may be necessary to utilize methods such as qRT-PCR, which allow larger sample sizes, for detecting subtle transcriptional changes in the brain.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Selenoproteínas/metabolismo , Selenito de Sódio/farmacologia , Peixe-Zebra/metabolismo , Animais , Primers do DNA/genética , Suplementos Nutricionais , Feminino , Regulação da Expressão Gênica/fisiologia , Masculino , Análise Serial de Proteínas , Reação em Cadeia da Polimerase em Tempo Real , Fatores Sexuais , Selenito de Sódio/administração & dosagem
4.
PLoS Pathog ; 8(11): e1003049, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209419

RESUMO

Egress from the host cell is a crucial and highly regulated step in the biology of the obligate intracellular parasite, Toxoplasma gondii. Active egress depends on calcium fluxes and appears to be a crucial step in escaping the attack from the immune system and, potentially, in enabling the parasites to shuttle into appropriate cells for entry into the brain of the host. Previous genetic screens have yielded mutants defective in both ionophore-induced egress and ionophore-induced death. Using whole genome sequencing of one mutant and subsequent analysis of all mutants from these screens, we find that, remarkably, four independent mutants harbor a mis-sense mutation in the same gene, TgCDPK3, encoding a calcium-dependent protein kinase. All four mutations are predicted to alter key regions of TgCDPK3 and this is confirmed by biochemical studies of recombinant forms of each. By complementation we confirm a crucial role for TgCDPK3 in the rapid induction of parasite egress and we establish that TgCDPK3 is critical for formation of latent stages in the brains of mice. Genetic knockout of TgCDPK3 confirms a crucial role for this kinase in parasite egress and a non-essential role for it in the lytic cycle.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Toxoplasmose/enzimologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/genética , Técnicas de Silenciamento de Genes , Camundongos , Proteínas Quinases/genética , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/patogenicidade , Toxoplasmose/genética , Toxoplasmose/patologia
5.
mBio ; 3(4): e00077-12, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761390

RESUMO

UNLABELLED: Promiscuous plasmids replicate in a wide range of bacteria and therefore play a key role in the dissemination of various host-beneficial traits, including antibiotic resistance. Despite the medical relevance, little is known about the evolutionary dynamics through which drug resistance plasmids adapt to new hosts and thereby persist in the absence of antibiotics. We previously showed that the incompatibility group P-1 (IncP-1) minireplicon pMS0506 drastically improved its stability in novel host Shewanella oneidensis MR-1 after 1,000 generations under antibiotic selection for the plasmid. The only mutations found were those affecting the N terminus of the plasmid replication initiation protein TrfA1. Our aim in this study was to gain insight into the dynamics of plasmid evolution. Changes in stability and genotype frequencies of pMS0506 were monitored in evolving populations of MR-1 (pMS0506). Genotypes were determined by sequencing trfA1 amplicons from individual clones and by 454 pyrosequencing of whole plasmids from entire populations. Stability of pMS0506 drastically improved by generation 200. Many evolved plasmid genotypes with point mutations as well as in-frame and frameshift deletions and duplications in trfA1 were observed in all lineages with both sequencing methods. Strikingly, multiple genotypes were simultaneously present at high frequencies (>10%) in each population. Their relative abundances changed over time, but after 1,000 generations only one or two genotypes dominated the populations. This suggests that hosts with different plasmid genotypes were competing with each other, thus affecting the evolutionary trajectory. Plasmids can thus rapidly improve their stability, and clonal interference plays a significant role in plasmid-host adaptation dynamics. IMPORTANCE: Promiscuous plasmids play an important role in the spread of antibiotic resistance and many other traits between closely and distantly related bacteria. However, little is known about the dynamics by which these broad-host-range antibiotic resistance plasmids adapt to novel bacteria and thereby become more persistent, even in the absence of antibiotics. In this study, we show that after no more than 200 generations of growth in the presence of antibiotics, a plasmid that was initially poorly maintained in a novel bacterial host evolved to become drastically more persistent in the absence of antibiotics. In each of the evolving populations, an unexpectedly large number of bacterial variants arose with distinct mutations in the plasmid's replication initiation protein. Our results suggest that clonal interference, characterized by competition between variant clones in a population, plays a major role in the evolution of the persistence of drug resistance.


Assuntos
Evolução Clonal , Evolução Molecular , Plasmídeos/genética , Shewanella/genética , Adaptação Fisiológica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Mutação , Plasmídeos/metabolismo , Shewanella/fisiologia , Transativadores/genética , Transativadores/metabolismo
6.
Bioinformatics ; 28(16): 2198-9, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22692220

RESUMO

UNLABELLED: Microbial communities have an important role in natural ecosystems and have an impact on animal and human health. Intuitive graphic and analytical tools that can facilitate the study of these communities are in short supply. This article introduces Microbial Community Analysis GUI, a graphical user interface (GUI) for the R-programming language (R Development Core Team, 2010). With this application, researchers can input aligned and clustered sequence data to create custom abundance tables and perform analyses specific to their needs. This GUI provides a flexible modular platform, expandable to include other statistical tools for microbial community analysis in the future. AVAILABILITY: The mcaGUI package and source are freely available as part of Bionconductor at http://www.bioconductor.org/packages/release/bioc/html/mcaGUI.html


Assuntos
Gráficos por Computador , Metagenoma , Software , Interface Usuário-Computador , Biodiversidade , Análise por Conglomerados , Análise Multivariada , Análise de Componente Principal , Análise de Sequência/métodos
7.
Bioinformatics ; 27(12): 1700-1, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21498398

RESUMO

SUMMARY: OTUbase is an R package designed to facilitate the analysis of operational taxonomic unit (OTU) data and sequence classification (taxonomic) data. Currently there are programs that will cluster sequence data into OTUs and/or classify sequence data into known taxonomies. However, there is a need for software that can take the summarized output of these programs and organize it into easily accessed and manipulated formats. OTUbase provides this structure and organization within R, to allow researchers to easily manipulate the data with the rich library of R packages currently available for additional analysis. AVAILABILITY: OTUbase is an R package available through Bioconductor. It can be found at http://www.bioconductor.org/packages/release/bioc/html/OTUbase.html.


Assuntos
Análise de Sequência de DNA , Software , Classificação/métodos , Análise por Conglomerados
8.
Artigo em Inglês | MEDLINE | ID: mdl-20483215

RESUMO

In this study, we tested for the presence of sexual dimorphism in the hepatic transcriptome of the adult zebrafish and examined the effect of long term manipulation of dietary carbohydrate on gene expression in both sexes. Zebrafish were fed diets comprised of 0%, 15%, 25%, or 35% carbohydrate from the larval stage through sexual maturity, then sampled for hepatic tissue, growth, proximate body composition, and retention efficiencies. Using Affymetrix microarrays and qRT-PCR, we observed substantial sexual dimorphism in the hepatic transcriptome. Males up-regulated genes associated with oxidative metabolism, carbohydrate metabolism, energy production, and amelioration of oxidative stress, while females had higher expression levels of genes associated with translation. Restriction of dietary carbohydrate (0% diet) significantly affected hepatic gene expression, growth performance, retention efficiencies of protein and energy, and percentages of moisture, lipid, and ash. The response of some genes to dietary manipulation varied by sex; with increased dietary carbohydrate, males up-regulated genes associated with oxidative metabolism (e.g. hadhbeta) while females up-regulated genes associated with glucose phosphorylation (e.g. glucokinase). Our data support the use of the zebrafish model for the study of fish nutritional genomics, but highlight the importance of accounting for sexual dimorphism in these studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA