Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Adv Pharm Technol Res ; 15(1): 37-42, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389966

RESUMO

Lactobacillus casei (LC) is a type of lactic acid bacterium that is known for its beneficial probiotic properties. However, it is not typically found in the human intestine because it lacks acid resistance. LC thrives in an optimal pH environment of 6.8 and can be initiated in a more acidic environment at a pH of 3.5. This study purposed to compare the effect of L-type methacrylic acid copolymer (MAC) as a matrix (0.50%, 0.75%, and 1.00%) on the physical characteristics of LC probiotic microparticles made by the spray drying process. Probiotic microparticles were also made from a dry suspension of LC FNCC 0090 bacteria and dispersed in a solution of L-type MAC. The results showed that a rise in matrix content by 1.00% increased particle size (4.47 ± 0.19 µm) and reduced moisture content (7.45 ± 0.11%). The analysis of microparticle morphology also indicated a positive correlation between the level of L-type MAC and the production of smooth, nonporous, and almost spherical shapes. In addition, it was observed that encapsulation efficiency (92.46 ± 0.17%) and protection against stomach acid (98.17% ±1.17%) increased with the level of the matrix.

2.
J Drug Target ; 31(4): 369-389, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36721905

RESUMO

The development of two-dimensional (2D) materials for biomedical applications has accelerated exponentially. Contrary to their bulk counterparts, the exceptional properties of 2D materials make them highly prospective for contrast agents for bioimage, drug, and heat delivery in biomedical treatment. Nevertheless, empty space in the integration and utilisation of 2D materials in living biological systems, potential toxicity, as well as required complicated synthesis and high-cost production limit the real application of 2D materials in those advance medical treatments. On the other hand, green technology appears to be one of strategy to shed a light on the blurred employment of 2D in medical applications, thus, with the increasing reports of green technology that promote advanced technologies, here, we compile, summarise, and synthesise information on the biomedical technology of 2D materials through green technology point of view. Beginning with a fundamental understanding, of crystal structures, the working mechanism, and novel properties, this article examines the recent development of 2D materials. As well as 2D materials made from natural and biogenic resources, a recent development in green-related synthesis was also discussed. The biotechnology and biomedical-related application constraints are also discussed. The challenges, solutions, and prospects of the so-called green 2D materials are outlined.


Assuntos
Meios de Contraste , Nanoestruturas , Preparações Farmacêuticas , Temperatura Alta , Estudos Prospectivos , Nanoestruturas/química , Tecnologia
3.
J Basic Clin Physiol Pharmacol ; 34(5): 639-645, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34171938

RESUMO

OBJECTIVES: Andrographis paniculata tablets (AS201-01) have previously been shown to have potent bioactivity as an antimalarial and to produce no unwanted side effects in animal models. Here, we present the phase 1 clinical trial conducted to evaluate the safety of AS201-01 tablets in healthy volunteers. METHODS: The study was a randomized, double-blind controlled cross-over, a placebo-controlled design consisting of a 4-day treatment of AS201-01 tablets. A total of 30 healthy human volunteers (16 males and 14 females) were divided into two groups, and each group was given 4 tablets, twice daily for 4 days. Group 1 received AS201-01, while group 2 received placebo tablets. Volunteers were given a physical examination before the treatment. The effects of AS201-01 on random blood glucose, biochemical, and hematological as well as urine profiles were investigated. RESULTS: There were no changes in observed parameters as a result of AS201-01 being administered. Statistical analysis showed no significant difference (p>0.05) between the test and control group regarding hematology profile, biochemical profile, and random blood glucose. Increased appetite and better sleep, which categorized as grade 1 adverse event was reported after treatment with AS201-01 tablet. CONCLUSIONS: The outcome supports our previous observation that the AS201-01 tablet, given twice a day for 4 days, is safe and nontoxic.

4.
Adv Pharmacol Pharm Sci ; 2022: 3336837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295681

RESUMO

Backgrounds: Curcumin (CUR) is a low-molecular-weight polyphenolic substance obtained from the tuber part of Curcuma species. Anti-inflammatory and anti-hepatitis C virus (HCV) activities have been associated with CUR. However, its poor aqueous solubility and low systemic bioavailability have been the challenges in improving the therapeutic efficacy of curcumin. Aim: The study aimed to produce CUR-loaded liposomal solid gels as anti-HCV delivery systems. Parameters including the physical characteristics and the cell cytotoxicity properties were evaluated. Methods: The freeze-drying technique was applied to manufacture the CUR-loaded liposomal solid gels. Scanning electron microscopy (SEM), X-ray diffractometry (XRD), and differential thermal analysis (DTA) were involved to reveal the characteristics of the solid gels. Such characteristics were as follows: the morphology and the microscopic structure of the solid gels, the crystallinity structure of the curcumin, and the thermal properties of the mixtures. Furthermore, their cell cytotoxicity was investigated using a Huh7it cell line. Results: The SEM images confirmed that curcumin liposomes were intact and trapped in the solid gel matrix. The XRD data showed flat patterns diffractograms of the formulations, confirming the transformation of CUR from crystalline to amorphous form. The DTA thermograms showed a single melting endothermic peak at a higher temperature around 200°C, indicating a single-phase transition of the mixtures. The XRD and DTA data revealed the molecular dispersion of CUR in the developed formulations. The cytotoxicity data provided as cell cytotoxicity 50 (CC50) for all formulations were ≥25 mg. These data confirmed that the developed liposomal solid gels were not cytotoxic to Huh7it cell line, indicating that the anti-HCV activity would be through a specific pathway and not by its toxicity. Conclusion: The CUR-loaded liposomal solid gels exhibited the potential and offered an alternative dosage form to improve the therapeutic efficacy of curcumin as an anti-HCV.

5.
J Basic Clin Physiol Pharmacol ; 32(4): 349-355, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34214302

RESUMO

OBJECTIVES: Ischemic stroke is known as a common causes of disability, lower psychological well-being as well as preventable death. The pathogenesis of ischemic stroke process becomes worse immediately after oxidative stress occurs. One of the flavonoids with antioxidant abilities is quercetin. This study was aimed to investigate quercetin administration on the behavioral functions (motor and sensory) and expression of melanocortin-4 receptor (MC4R) in mice with ischemic stroke. METHODS: Male ICR mice were divided into sham, stroke, stroke with quercetin 100, 150, and 200 mg/kg. The stroke model was performed by blocking the left common carotid artery for 2 h. Quercetin was intraperitoneally administered daily for seven days. Evaluation was conducted during two weeks after induction using ladder rung walking test and narrow beam test for motoric function and adhesive removal tape test for sensory function. On day-14 mice were sacrificed, MC4R expression in the dorsal striatum was determined using RT-PCR. RESULTS: Stroke decreased the motor, sensory function and MC4R mRNA expression in dorsal striatum. Quercetin improved motor and sensory function, and upregulated expression of MC4R. CONCLUSIONS: Quercetin administration after ischemic stroke improves behavioral function, possibly through the upregulation of MC4R in the brain.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos ICR , Quercetina/farmacologia , Receptor Tipo 4 de Melanocortina , Acidente Vascular Cerebral/tratamento farmacológico
6.
J Basic Clin Physiol Pharmacol ; 32(4): 623-630, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34214360

RESUMO

OBJECTIVES: Loratadine belongs to Class II compound of biopharmaceutics classification system (BCS) due its low solubility and high membrane permeability. Cocrystal is a system of multicomponent crystalline that mostly employed to improve solubility. Succinic acid is one of common coformer in cocrystal modification. This research aims to investigate cocrystal formation between loratadine and succinic acid and its effect on solubility property of loratadine. METHODS: Cocrystal of loratadine-succinic acid was prepared by solution method using methanol as the solvent. Cocrystal formation was identified under observation of polarization microscope and analysis of the binary phase diagram. The cocrystal phase was characterized by differential thermal analysis (DTA), powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). Solubility study was conducted in phosphate-citrate buffer pH 7.0 ± 0.5 at 30 ± 0.5 °C. RESULTS: Loratadine is known to form cocrystal with succinic acid in 1:1 M ratio. Cocrystal phase has lower melting point at 110.9 °C. Powder diffractograms exhibited new diffraction peaks at 2θ of 5.28, 10.09, 12.06, 15.74, 21.89, and 28.59° for cocrystal phase. IR spectra showed that there was a shift in C=O and O-H vibration, indicating intermolecular hydrogen bond between loratadine and succinic acid. SEM microphotographs showed different morphology for cocrystal phase. Loratadine solubility in cocrystal phase was increased up to 2-fold compared to loratadine alone. CONCLUSIONS: Cocrystal of loratadine and succinic acid is formed by stoichiometry of 1:1 via C=O and H-O interaction. Cocrystal phase shows different physicochemical properties and responding to those properties, it shows improved loratadine solubility as well.


Assuntos
Loratadina/química , Ácido Succínico/química , Cristalização , Pós , Solubilidade , Difração de Raios X
7.
Biochem Res Int ; 2021: 6685921, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628506

RESUMO

BACKGROUND: At the present time, COVID-19 vaccines are at the testing stage, and an effective treatment for COVID-19 incorporating appropriate safety measures remains the most significant obstacle to be overcome. A strategic countermeasure is, therefore, urgently required. AIM: This study aims to evaluate the efficacy and safety of a combination of lopinavir/ritonavir-azithromycin, lopinavir/ritonavir-doxycycline, and azithromycin-hydroxychloroquine used to treat patients with mild to moderate COVID-19 infections. Setting and Design. This study was conducted at four different clinical study sites in Indonesia. The subjects gave informed consent for their participation and were confirmed as being COVID-19-positive by means of an RT-PCR test. The present study constituted a randomized, double-blind, and multicenter clinical study of patients diagnosed with mild to moderate COVID-19 infection. MATERIALS AND METHODS: Six treatment groups participated in this study: a Control group administered with a 500 mg dose of azithromycin; Group A which received a 200/50 mg dose of lopinavir/ritonavir and 500 mg of azithromycin; Group B treated with a 200/50 mg dose of lopinavir/ritonavir and 200 mg of doxycycline; Group C administered with 200 mg of hydroxychloroquine and 500 mg of azithromycin; Group D which received a 400/100 mg dose of lopinavir/ritonavir and 500 mg of azithromycin; and Group E treated with a 400/100 mg dose of lopinavir/ritonavir and 200 mg of doxycycline. RESULTS: 754 subjects participated in this study: 694 patients (92.4%) who presented mild symptoms and 57 patients (7.6%) classified as suffering from a moderate case of COVID-19. On the third day after treatment, 91.7%-99.2% of the subjects in Groups A-E were confirmed negative by a PCR swab test compared to 26.9% in the Control group. Observation of all groups which experienced a significant decrease in virus load between day 1 and day 7 was undertaken. Other markers, such as CRP and IL-6, were significantly lower in all treatment groups (p < 0.05 and p < 0.0001) than in the Control group. Furthermore, IL-10 and TNF-α levels were significantly elevated in all treatment groups (p < 0.0001). The administration of azithromycin to the Control group increased CRP and IL-6 levels, while reduced IL-10 and TNF-α on day 7 (p < 0.0001) compared with day 1. Decreases in ALT and AST levels were observed in all groups (p < 0.0001). There was an increase in creatinine in the serum level of the Control, C, D, and E groups (p < 0.05), whereas the BUN level was elevated in all groups (p < 0.0001). CONCLUSIONS: The study findings suggest that the administration of lopinavir/ritonavir-doxycycline, lopinavir/ritonavir-azithromycin, and azithromycin-hydroxychloroquine as a dual drug combination produced a significantly rapid PCR conversion rate to negative in three-day treatment of mild to moderate COVID-19 cases. Further studies should involve observation of older patients with severe clinical symptoms in order to collate significant amounts of demographic data.

8.
ScientificWorldJournal ; 2020: 7367836, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32831808

RESUMO

Cassia siamea leaf has been proven in vitro and in vivo to have a strong antimalarial activity with Cassiarin A as its active compound. To obtain a source of C. siamea medicinal plant with high level of active antimalarial compound (Cassiarin A), a valid method for determining Cassiarin A level is needed. For this reason, this research conducts the validation of the Cassiarin A content with determination method using thin-layer chromatography (TLC) densitometry which includes the determination of selectivity (Rs), linearity (r), accuracy, precision, limit of detection (LOD), and limit of quantification (LOQ). Cassiarin A was chromatographed on silica gel 60 F254 TLC plate using chloroform : ethanol (85 : 15 v/v) as a mobile phase. Cassiarin A was quantified by densitometric analysis at 368 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r = 0.9995. The method was validated for precision, recovery, repeatability. The minimum detectable amount was found to be 0.0027 µg/spot, whereas the limit of quantitation was found to be 0.008 µg/spot. The results of this validation are then used to determine the Cassiarin A level of C. siamea leaf from various regions in Indonesia. Based on the results of the study, it can be concluded that the TLC-densitometry method can be used to determine level of the Cassiarin A compound with the advantages of being fast, easy, accurate, and inexpensive. In addition, it showed that C. siamea leaves from Pacitan have the highest level of Cassiarin A compared to other areas studied.


Assuntos
Cassia/química , Cromatografia em Camada Fina/métodos , Densitometria/métodos , Compostos Heterocíclicos com 3 Anéis/análise , Folhas de Planta/química , Calibragem , Indonésia , Limite de Detecção , Plantas Medicinais/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-31837255

RESUMO

Background Meloxicam (MLX) is a potent non-steroidal anti-inflammatory drug with poor solubility. Solid dispersion (SD) is an effective formulation strategy to improve the dissolution rate of poorly water-soluble compounds. Hydroxy propyl methyl cellulose (HPMC) as an inert polymer carrier and nicotinic acid (NA) as disturbance can be used as a matrix of SD. The aim of this study was to determine the effect of MLX-HPMC-NA SD on the solubility and dissolution of MLX. Methods SD was prepared by the solvent evaporation technique with methanol being used as a solvent. Methanol was evaporated at room temperature. SD of MLX was prepared involving various matrix compositions at MLX:HPMC:NA ratios of 1:1:1 (SD1), 1:1:2 (SD2), 1:2:1 (SD3), and 1:2:2 (SD4). Results The solubility profile of MLX in SD3 (64.34 ppm) showed a higher improvement than the physical mixture (15.99 ppm) and pure MLX (6.89 ppm). This increase might be due to the formation of molecular dispersion of MLX in the polymer as hydrophilic matrix and NA have both donor-acceptor sites for hydrogen bonding interactions. The dissolution profile of SD3 also showed the highest improvement. The melting endotherm of SD3 was detected at 219.5 °C, in which case it originated from NA rather than from MLX, showing that MLX was molecularly dispersed and amorphous. Conclusions MLX solubility and dissolution profile could be improved by the SD technique with a matrix of HPMC and NA. The best result was given by SD3 with an MLX:HPMC:NA ratio of 1:2:1. Based on the characterization study, it is predicted that hydrophilic polymer and hydrogen bonding interactions play important roles in MLX solubility or dissolution rate improvement.


Assuntos
Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Meloxicam/química , Solubilidade , Derivados da Hipromelose/química , Niacina/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-31837256

RESUMO

Background Solid dispersion (SD) represents a good method for enhancing the solubility of poorly water-soluble drugs. Meloxicam (MLX), a nonsteroidal anti-inflammatory drug has poor solubility in water. Hydroxypropyl methylcellulose (HPMC) 2910 3 cps, a hydrophilic carrier and nicotinamide (NC), a hydrotropic agent can be used as matrix of SD. The aim of this study is to investigate the effect of HPMC 2910 3 cps and NC as SD matrix on the solubility and dissolution rate of MLX. Methods The SD of MLX was prepared by solvent evaporation method using methanol as solvent. The SD formulations composed of HPMC and NC in different ratios (1:1:1, 1:1:2, 1:2:1, 1:2:2). The physical state of MLX SD were characterized by Differential Thermal Analyzer (DTA), Fourier Transform Infrared Spectroscopy, powder X-ray diffractometer (PXRD), Scanning Electron Microscopy (SEM). The solubility and dissolution of the MLX SD were also evaluated. Results The results of differential thermal analysis (DTA) showed that the melting point of MLX SD was lower than MLX further the X-ray diffractogram showed a decrease of the crystallinity of MLX in SD. Those indicated that MLX was dispersed molecularly in SD. The SD showed a widening transmission peak at 3000-3500 cm-1 which resembled the peak of pure MLX transmission. It indicated that intermolecular hydrogen bonds were formed between MLX, HPMC, and NC. The solubility and the dissolution efficiency (ED60) of SD with MLX-HPMC 2910 3 cps-NC = 1:2:1 increased 3.59 times and 1.50 times higher then MLX substance. Conclusions MLX-HPMC-NC SD system increased the solubility and dissolution of MLX. The SD with MLX-HPMC 2910 3 cps-NC ratio of 1:2:1 had the highest solubility and ED60 compared to the other SD formulas.


Assuntos
Composição de Medicamentos/métodos , Derivados da Hipromelose/química , Meloxicam/química , Niacinamida/química , Solubilidade
11.
Res Pharm Sci ; 14(1): 1-11, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30936927

RESUMO

The present study was to investigate the effect of cellulose matrix and oligosaccharide on solid state and morphology characteristics of freeze-dried cationic dimethyldioctadecylammonium (DDA)-based liposomes encapsulating ovalbumin (OVA). The OVA-containing liposomes were protected using cellulose derivative matrix and oligosaccharide. Despite the fact that saccharides are known to preserve protein and lipid membranes during drying, however, collapse structure are often addressed. In other side, cellulose matrix potentially prevents collapsing as it has been widely used for matrix in drug delivery formulations to increase the mass for compact matrices of resultant products. Their solid state characteristics were determined in terms of their crystallinity using X-Ray diffraction (XRD), thermal properties and detection of phase separation using differential scanning calorimetry (DSC). Furthermore, their morphology was observed using scanning electron microscopy and transmission electron microscopy. The study revealed that formulation with either oligosaccharide and cellulose matrix demonstrated a miscible mixture with DDA and soy phosphatidylcholine (SPC) that might construct stable dried liposomal formulation. Phase separation was not observed in formula with combination of oligosaccharide and cellulose matrix where their DSC thermograms showed glass transition indicating amorphous structure and miscible mixture. XRD confirmed the absence of crystal-like properties, demonstrating prevented crystallization. The dry products were porous with spherical liposomes trapped in the matrices, signifying the ease in reconstitution. Furthermore, OVA were well-preserved as its recovery was more than 80%. The preservation of both liposomes and protein antigen were found to be dependent upon the incorporation of both oligosaccharide and cellulose matrix included in the formulation.

12.
Turk J Pharm Sci ; 15(2): 136-141, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32454652

RESUMO

OBJECTIVES: The purpose of this study was to investigate the effect of andrographolide-carboxymethyl chitosan nanoparticles formation on the physical characteristics, in vitro release profile and in vivo antimalarial activity of andrographolide. MATERIALS AND METHODS: Nanoparticles were prepared by ionic gelation method-spray drying using CaCl2 as the crosslinker with a composition of drug: polymer: CaCl2=40: 250: 100. The obtained particles were evaluated for its size and morphology; physical state, drug content, in vitro drug release and in vivo antimalarial activity on Plasmodium berghei infected mice. RESULTS: The results of DTA and XRD showed that nanoparticle systems had a lower melting point and lower crystallinity degree. The drug dissolved from the nanoparticles was increased up to 6.5 times and the in vivo antimalarial activity was 1.65 times higher compared to andrographolide. CONCLUSION: The formation andrographolide-carboxymethyl chitosan nanoparticles affected the physical characte-ristics of andrographolide. The decrease crystallinity of andrographolide resulted in a lower melting point of andrographolide. Such changes provided a positive impact to the drug dissolution and then its activity.

13.
Turk J Pharm Sci ; 14(3): 280-284, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32454625

RESUMO

OBJECTIVES: Quercetin is one of the flavonoids with a polyhydroxyaromatic structure. Quercetin has been proposed to exhibit a bioWactivity against oxidative stress. However, quercetin has poor solubility in aqueous media. The purpose of this study was to investigate the physicochemical properties and dissolution rates of quercetin-succinic acid co-crystals. MATERIALS AND METHODS: The quercetin-succinic acid co-crystals were prepared in 1:1 molar ratio using solvent evaporation. X-ray diffraction, differential thermal analysis, infrared spectroscopy, and scanning electron microscopy were performed to determine the physicochemical properties of quercetin-succinic acid co-crystals. Dissolution was studied in medium citrate buffer with 2% SLS for 60 min using USP II (paddle) apparatus at 100 rpm and 37°C. RESULTS: Based on diffractogram, thermogram, infrared spectrum, and microscopic capture, the physicochemical properties of quercetin-succinic acid co-crystals showed difference to those of quercetin. In addition, the in vitro dissolution test showed that the dissolution profile of co-crystals was significantly higher than pure quercetin. CONCLUSION: This study suggests that the formation of quercetin-succinic acid co-crystals using solvent evaporation enhanced the physicochemical properties and dissolution rate of quercetin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA