Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Green Chem ; 25(11): 4415-4428, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37288453

RESUMO

Studies have shown that the size of LNP depends on the molecular weight (Mw) of lignin. There is however need for deeper understanding on the role of molecular structure on LNP formation and its properties, in order to build a solid foundation on structure-property relationships. In this study, we show, for similar Mw lignins, that the size and morphology of LNPs depends on the molecular structure of the lignin macromolecule. More specifically, the molecular structure determined the molecular conformations, which in turn affects the inter-molecular assembly to yield size- and morphological-differences between LNPs. This was supported by density functional theory (DFT) modelling of representative structural motifs of three lignins sourced from Kraft and Organosolv processes. The obtained conformational differences are clearly explained by intra-molecular sandwich and/or T-shaped π-π stacking, the stacking type determined by the precise lignin structure. Moreover, the experimentally identified structures were detected in the superficial layer of LNPs in aqueous solution, confirming the theoretically predicted self-assembly patterns. The present work demonstrates that LNP properties can be molecularly tailored, consequently creating an avenue for tailored applications.

2.
J Org Chem ; 88(2): 863-870, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36622848

RESUMO

The amide bond is prominent in natural and synthetic organic molecules endowed with activity in various fields. Among a wide array of amide synthetic methods, substitution on a pre-existing (O)C-N moiety is an underexplored strategy for the synthesis of amides. In this work, we disclose a new protocol for the defluorinative arylation of aliphatic and aromatic trifluoroacetamides yielding aromatic amides. The mechanochemically induced reaction of either arylboronic acids, trimethoxyphenylsilanes, diaryliodonium salts, or dimethyl(phenyl)sulfonium salts with trifluoroacetamides affords substituted aromatic amides in good to excellent yields. These nickel-catalyzed reactions are enabled by C-CF3 bond activation using Dy2O3 as an additive. The current protocol provides versatile and scalable routes for accessing a wide variety of substituted aromatic amides. Moreover, the protocol described in this work overcomes the drawbacks and limitations in the previously reported methods.

3.
Int J Biol Macromol ; 220: 1444-1453, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36122772

RESUMO

The morphology control of lignin through particle size reduction to nanoscale seems to be a suitable conversion technology to overcome the intrinsic limitations of its native form to develop a wide range of biomaterials with high performance. Colloidal lignin particles (CLPs) in the range of 150-200 nm were synthesised from hardwood and softwood kraft lignins by the solvent shifting method. The initial molecular features of kraft lignins were evaluated in terms of purity, molecular weight distribution, and chemical functionalities. The impact of the lignin source and structure on the morphology, size distribution, and surface chemistry of CLPs was evaluated by particle size analyser, SEM, TEM and 1H NMR. The results evidenced the influence of the botanical origin on the morphology and surface chemistry of particles. Furthermore, the antioxidant properties and cytotoxicity of lignins and corresponding CLPs, towards lung fibroblast cells were compared. CLPs from hardwood kraft lignins exhibited higher antioxidant power against DPPH free radical and a higher cytotoxic effect (IC30 = 67-70 µg/mL) against lung fibroblast when compared to CLPs from softwood kraft lignin (IC30 = ~91 µg/mL). However, the cytotoxicity of these biomaterials was dose-dependent, suggesting their potential application as active ingredients in cosmetic and pharmaceutic products at low concentrations.


Assuntos
Antioxidantes , Lignina , Antioxidantes/farmacologia , Materiais Biocompatíveis , Lignina/química , Lignina/farmacologia , Solventes/química
4.
Materials (Basel) ; 14(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34500949

RESUMO

The aim of this Special Issue is to highlight the progress in the manufacturing,characterization, and applications of environmentally friendly polymeric blends from renewable resources [...].

5.
Membranes (Basel) ; 11(3)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805729

RESUMO

Nanocellulose membranes based on tunicate-derived cellulose nanofibers, starch, and ~5% wood-derived lignin were investigated using three different types of lignin. The addition of lignin into cellulose membranes increased the specific surface area (from 5 to ~50 m2/g), however the fine porous geometry of the nanocellulose with characteristic pores below 10 nm in diameter remained similar for all membranes. The permeation of H2, CO2, N2, and O2 through the membranes was investigated and a characteristic Knudsen diffusion through the membranes was observed at a rate proportional to the inverse of their molecular sizes. Permeability values, however, varied significantly between samples containing different lignins, ranging from several to thousands of barrers (10-10 cm3 (STP) cm cm-2 s-1 cmHg-1cm), and were related to the observed morphology and lignin distribution inside the membranes. Additionally, the addition of ~5% lignin resulted in a significant increase in tensile strength from 3 GPa to ~6-7 GPa, but did not change thermal properties (glass transition or thermal stability). Overall, the combination of plant-derived lignin as a filler or binder in cellulose-starch composites with a sea-animal derived nanocellulose presents an interesting new approach for the fabrication of membranes from abundant bio-derived materials. Future studies should focus on the optimization of these types of membranes for the selective and fast transport of gases needed for a variety of industrial separation processes.

6.
Chemosphere ; 279: 130538, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33894514

RESUMO

Valorization of lignin is still an open question and lignin has therefore remained an underutilized biomaterial. This situation is even more pronounced for hydrolysis lignin, which is characterized by a highly condensed and excessively cross-linked structure. We demonstrate the synthesis of photoactive lignin/Bi4O5Br2/BiOBr bio-inorganic composites consisting of a lignin substrate that is coated by semiconducting nanosheets. The XPS analysis reveals that growing these nanosheets on lignin instead on cellulose prevents the formation of Bi5+ ions at the surface region, yielding thus a modified heterojunction Bi4O5Br2/BiOBr. The material contains 18.9% of Bi4O5Br2/BiOBr and is effective for the photocatalytic degradation of cationic methylene blue (MB) and zwitterionic rhodamine B (RhB) dyes under light irradiation. Lignin/Bi4O5Br2/BiOBr decreases the dye concentration from 80 mg L-1 to 12.3 mg L-1 for RhB (85%) and from 80 mg L-1 to 4.4 mg L-1 for MB (95%). Complementary to the dye degradation, the lignin as a main component of the composite, was found to be efficient and rapid biosorbent for nickel, lead, and cobalt ions. The low cost, stability and ability to simultaneously photo-oxidize organic dyes and adsorb metal ions, make the photoactive lignin/Bi4O5Br2/BiOBr composite a prospective material for textile wastewaters remediation and metal ions recycling.


Assuntos
Corantes , Lignina , Bismuto , Hidrólise
7.
Front Bioeng Biotechnol ; 9: 817768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35198551

RESUMO

The natural polymer, lignin, possesses unique biodegradable and biocompatible properties, making it highly attractive for the generation of nanoparticles for targeted cancer therapy. In this study, we investigated spruce and eucalyptus lignin nanoparticles (designated as S-and E-LNPs, respectively). Both LNP types were generated from high-molecular-weight (M w ) kraft lignin obtained as insoluble residues after a five-step solvent fractionation approach, which included ethyl acetate, ethanol, methanol, and acetone. The resulting S-and E-LNPs ranged in size from 16 to 60 nm with uniform spherical shape regardless of the type of lignin. The preparation of LNPs from an acetone-insoluble lignin fraction is attractive because of the use of high-M w lignin that is otherwise not suitable for most polymeric applications, its potential scalability, and the consistent size of the LNPs, which was independent of increased lignin concentrations. Due to the potential of LNPs to serve as delivery platforms in liver cancer treatment, we tested, for the first time, the efficacy of newly generated E-LNPs and S-LNPs in two types of primary liver cancer, hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), in vitro. Both S-LNPs and E-LNPs inhibited the proliferation of HCC cells in a dose-dependent manner and did not affect CCA cell line growth. The inhibitory effect toward HCC was more pronounced in the E-LNP-treated group and was comparable to the standard therapy, sorafenib. Also, E-LNPs induced late apoptosis and necroptosis while inhibiting the HCC cell line. This study demonstrated that an elevated number of carbohydrates on the surface of the LNPs, as shown by NMR, seem to play an important role in mediating the interaction between LNPs and eukaryotic cells. The latter effect was most pronounced in E-LNPs. The novel S- and E-LNPs generated in this work are promising materials for biomedicine with advantageous properties such as small particle size and tailored surface functionality, making them an attractive and potentially biodegradable delivery tool for combination therapy in liver cancer, which still has to be verified in vivo using HCC and CCA models.

8.
Carbohydr Polym ; 250: 116916, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049888

RESUMO

This study demonstrates the potential of feruloylated arabinoxylan (AX) from wheat bran for the preparation of bioactive barrier films with antioxidant properties. We have comprehensively evaluated the influence of the structural features and chemical acetylation of feruloylated AX extracted by subcritical water on their film properties, in comparison with alkaline extracted AX and a reference wheat endosperm AX. The degree of substitution (DS) of AX had a large influence on film formation, higher DS yielded better thermal and mechanical properties. The barrier properties of AX films were significantly enhanced by external plasticization by sorbitol. Chemical acetylation significantly improved the thermal stability but not the mechanical or barrier properties of the films. The presence of bound ferulic acid in feruloylated AX films resulted in higher antioxidant activity compared to external addition of free ferulic acid, which demonstrates their potential use in active packaging applications for the preservation of oxygen-sensitive foodstuff.


Assuntos
Ácidos Cumáricos/química , Fibras na Dieta/análise , Endosperma/química , Água/química , Xilanos/química , Xilanos/isolamento & purificação , Acetilação , Xilanos/metabolismo
9.
ACS Omega ; 5(23): 13703-13711, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32566835

RESUMO

The potential to modify pulp and paper properties by oxygen delignification was assessed by looking beyond the ordinary purpose of oxygen delignification. Pulps with the same kappa number were obtained by both pulping and the combination of pulping and oxygen delignification, and the mechanical and chemical properties were compared. The oxidation of pulp components leads to an increase in carboxylic acid groups in the fibers, resulting in a large influence on fiber swelling, seen as an increase in the water retention value and fiber saturation point. The introduction of charged groups appears to replace some of the morphological changes caused by refining and enhance the strength of fiber-fiber joints, generating pulps with better refinability and higher tensile strength. Oxygen delignification was able to improve the tensile index with 6% at the same sheet density and less refining energy, when the amount of total fiber charges was higher than 140 µekv/g.

10.
Polymers (Basel) ; 12(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438552

RESUMO

The preparation and the thermal and mechanical characteristics of lignin-containing polymer biocomposites were studied. Bisphenol A glycerolate (1 glycerol/phenol) diacrylate (BPA.GDA) was used as the main monomer, and butyl acrylate (BA), 2-ethylhexyl acrylate (EHA) or styrene (St) was used as the reactive diluent. Unmodified lignin (L) or lignin modified with methacryloyl chloride (L-M) was applied as an ecofriendly component. The influences of the lignin, its modification, and of the type of reactive diluent on the properties of the composites were investigated. In the biocomposites with unmodified lignin, the lignin mainly acted as a filler, and it seemed that interactions occurred between the hydroxyl groups of the lignin and the carbonyl groups of the acrylates. When methacrylated lignin was applied, it seemed to take part in the creation of a polymer network. When styrene was added as a reactive diluent, the biocomposites had a more homogeneous structure, and their thermal resistance was higher than those with acrylate monomers. The use of lignin and its methacrylic derivative as a component in polymer composites promotes sustainability in the plastics industry and can have a positive influence on environmental problems related to waste generation.

11.
ACS Omega ; 5(19): 10847-10856, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32455205

RESUMO

Efficient and sustainable recycling of cobalt(II) is of increasing importance to support technological development in energy storage and electric vehicle industries. A composite material based on membrane-filtered lignin deposited on nanoporous silica microparticles was found to be an effective and sustainable sorbent for cobalt(II) removal. This bio-based sorbent exhibited a high sorption capacity, fast kinetics toward cobalt(II) adsorption, and good reusability. The adsorption capacity was 18 mg Co(II) per gram of dry adsorbent at room temperature (22 °C) at near-neutral pH, three times higher than that of the summarized capacity of lignin or silica starting materials. The kinetics study showed that 90 min is sufficient for effective cobalt(II) extraction by the composite sorbent. The pseudo-second-order kinetics and Freundlich isotherm models fitted well with experimentally obtained data and confirmed heterogeneity of adsorption sites. The promising potential of the lignin-silica composites for industrial applications in the cobalt recovering process was confirmed by high values of desorption in mildly acidic solutions.

12.
Biomacromolecules ; 21(5): 1920-1928, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32160463

RESUMO

Here we investigate the relationship between thermomechanical properties and chemical structure of well-characterized lignin-based epoxy resins. For this purpose, technical lignins from eucalyptus and spruce, obtained from the Kraft process, were used. The choice of lignins was based on the expected differences in molecular structure. The lignins were then refined by solvent fractionation, and three fractions with comparable molecular weights were selected to reduce effects of molar mass on the properties of the final thermoset resins. Consequently, any differences in thermomechanical properties are expected to correlate with molecular structure differences between the lignins. Oxirane moieties were selectively introduced to the refined fractions, and the resulting lignin epoxides were subsequently cross-linked with two commercially available polyether diamines (Mn = 2000 and 400) to obtain lignin-based epoxy resins. Molecular-scale characterization of the refined lignins and their derivatives were performed by 31P NMR, 2D-NMR, and DSC methods to obtain the detailed chemical structure of original and derivatized lignins. The thermosets were studied by DSC, DMA, and tensile tests and demonstrated diverse thermomechanical properties attributed to structural components in lignin and selected amine cross-linker. An epoxy resin with a lignin content of 66% showed a Tg of 79 °C from DMA, Young's modulus of 1.7 GPa, tensile strength of 66 MPa, and strain to failure of 8%. The effect of molecular lignin structure on thermomechanical properties was analyzed, finding significant differences between the rigid guaiacyl units in spruce lignin compared with sinapyl units in eucalyptus lignin. The methodology points toward rational design of molecularly tailored lignin-based thermosets.


Assuntos
Eucalyptus , Lignina , Fracionamento Químico , Resinas Epóxi , Peso Molecular
13.
Materials (Basel) ; 12(18)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487838

RESUMO

This work investigates the impact of lignin origin and structural characteristics, such as molecular weight and functionality, on the properties of corresponding porous biopolymeric microspheres obtained through suspension-emulsion polymerization of lignin with styrene (St) and/or divinylbenzene (DVB). Two types of kraft lignin, which are softwood (Picea abies L.) and hardwood (Eucalyptus grandis), fractionated by common industrial solvents, and related methacrylates, were used in the synthesis. The presence of the appropriate functional groups in the lignins and in the corresponding microspheres were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FT-IR), while the thermal properties were studied by differential scanning calorimetry (DSC). The texture of the microspheres was characterized using low-temperature nitrogen adsorption. The swelling studies were performed in typical organic solvents and distilled water. The shapes of the microspheres were confirmed with an optical microscope. The introduction of lignin into a St and/or DVB polymeric system made it possible to obtain highly porous functionalized microspheres that increase their sorption potential. Lignin methacrylates created a polymer network with St and DVB, whereas the unmodified lignin acted mainly as an eco-friendly filler in the pores of St-DVB or DVB microspheres. The incorporation of biopolymer into the microspheres could be a promising alternative to a modification of synthetic materials and a better utilization of lignin.

14.
Carbohydr Polym ; 220: 132-140, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31196532

RESUMO

The impact of various degrees of acetylation on improving the thermal stability of xylan isolated from different botanical source has been studied; methylglucuronoxylan from birch and eucalyptus, arabinoglucuronoxylan from spruce and glucuronoarabinoxylan from sugarcane bagasse and straw. The lower molecular weight of non- acetylated methylglucuronoxylan (17.7-23.7 kDa) and arabinoglucuronoxylan (16.8 kDa) meant that they were more soluble in water than glucuronoarabinoxylan (43.0-47.0 kDa). The temperature at the onset of degradation increased by 17-61 °C and by 75-145 °C for low and high acetylated xylans respectively, as a result of acetylation. A glass transition temperature in the range of 121-132 °C was observed for the samples non-acetylated and acetylated at low degree of acetylation (0.0-0.6). The acetylation to higher degrees (1.4-1.8) increased the glass transition temperature of the samples to 189-206 °C. Acetylation proved to be an efficient method for functionalization of the xylan to increase the thermal stability.

15.
Polymers (Basel) ; 11(3)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30960522

RESUMO

Lignin fractions having different molecular weights and varied chemical structures isolated from kraft lignins of both softwood and hardwood via a sequential solvent fractionation technique were incorporated into a tunicate cellulose nanofibers (CNF)-starch mixture to prepare 100% bio-based composite films. The aim was to investigate the impact of lignin structural diversity on film performance. It was confirmed that lignin's distribution in the films was dependent on the polarity of solvents used for fractionation (acetone > methanol > ethanol > ethyl acetate) and influenced the optical properties of the films. The ⁻OH group content and molecular weight of lignin were positively related to film density. In general, the addition of lignin fractions led to decrease in thermal stability and increase in Young's modulus of the composite films. The modulus of the films was found to decrease as the molecular weight of lignin increased, and a higher amount of carboxyl and phenolic ⁻OH groups in the lignin fraction resulted in films with higher stiffness. The thermal analysis showed higher char content formation for lignin-containing films in a nitrogen atmosphere with increased molecular weight. In an oxygen atmosphere, the phenol content, saturated side chains and short chain structures of lignin had impacts on the maximum decomposition temperature of the films, confirming the relationship between the chemical structure of lignin and thermo-oxidative stability of the corresponding film. This study addresses the importance of lignin diversities on composite film performance, which could be helpful for tailoring lignin's applications in bio-based materials based on their specific characteristics.

16.
ACS Omega ; 4(27): 22530-22539, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31909336

RESUMO

In recent years, functional polymeric compounds have been widely used to modify the silica surface, which allows one to obtain the corresponding organomineral composites for broad application prospects. In this case, lignin-a cross-linked polyphenolic macromolecule-is of great interest according to its valuable properties and possible surplus as a by-product of pulp and paper industry and various biorefinery processes. Hybrid materials based on kraft softwood lignin and silica were obtained via the electrostatic attraction of oxidized lignin to the aminosilica surface with different porosities, which were prepared by the amination of the commercial silica gel with an average pore diameter of 6 nm, and the silica prepared in the lab with the oxidized kraft lignin and lignin-silica samples with an average pore diameter of 38 nm was investigated by physicochemical methods: two-dimensional nuclear magnetic resonance (NMR), 31P NMR, Fourier transform infrared spectroscopy, thermogravimetric analysis in nitrogen and air atmosphere, scanning electron microscopy, and adsorption methods. After oxidation, the content of carboxylic groups almost doubled in the oxidized lignin, compared to that in the native one (0.74 mmol/g against 0.44 mmol/g, respectively). The lignin content was deposited onto the surface of aminosilica, depending on the porosity of the silica material and on the content of amino groups on its surface, giving lignin-aminosilica with 20% higher lignin content than the lignin-aminosilica gel. Both types of lignin-silica composites demonstrate a high sorptive capacity toward crystal violet dye. The suggested approach is an easy and low-cost way of synthesis of lignin-silica composites with unique properties. Such composites have a great potential for use as adsorbents in wastewater treatment processes.

17.
Nanomaterials (Basel) ; 8(11)2018 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-30453688

RESUMO

The development of advanced hybrid materials based on polymers from biorenewable sources and mineral nanoparticles is currently of high importance. In this paper, we applied softwood kraft lignins for the synthesis of lignin/SiO2 nanostructured composites. We described the peculiarities of composites formation in the sol-gel process through the incorporation of the lignin into a silica network during the hydrolysis of tetraethoxysilane (TEOS). The initial activation of lignins was achieved by means of a Mannich reaction with 3-aminopropyltriethoxysilane (APTES). In the study, we present a detailed investigation of the physicochemical characteristics of initial kraft lignins and modified lignins on each step of the synthesis. Thus, 2D-NMR, 31P-NMR, size-exclusion chromatography (SEC) and dynamic light scattering (DLS) were applied to analyze the characteristics of pristine lignins and lignins in dioxan:water solutions. X-Ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) were used to confirm the formation of the lignin⁻silica network and characterize the surface and bulk structures of the obtained hybrids. Termogravimetric analysis (TGA) in nitrogen and air atmosphere were applied to a detailed investigation of the thermal properties of pristine lignins and lignins on each step of modification. SEM confirmed the nanostructure of the obtained composites. As was demonstrated, the activation of lignin is crucial for the sol-gel formation of a silica network in order to create novel hybrid materials from lignins and alkoxysilanes (e.g., TEOS). It was concluded that the structure of the lignin had an impact on its reactivity during the activation reaction, and consequently affected the properties of the final hybrid materials.

18.
Top Curr Chem (Cham) ; 376(4): 33, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29995273

RESUMO

Lignin, a major component of lignocellulosic biomass, is generated in enormous amounts during the pulp production. It is also a major coproduct of second generation biofuels. The effective utilization of lignin is critical for the accelerated development of the advanced cellulosic biorefinery. Low cost and availability of lignin make it attractive precursor for preparation of a range of carbon materials, including activated carbons, activated carbon fibers (CF), structural CF, graphitic carbons or carbon black that could be used for environmental protection, as catalysts, in energy storage applications or as reinforcing components in advanced composite materials. Technical lignins are very diverse in terms of their molecular weight, structure, chemical reactivity, and chemical composition, which is a consequence of the different origin of the lignin and the various methods of lignin isolation. The inherent heterogeneity of lignin is the main obstacle to the preparation of high-performance CF. Although lignin-based CF still do not compete with polyacrylonitrile-derived CF in mechanical properties, they nevertheless provide new markets through high availability and low production costs. Alternatively, technical lignin could be used for production of carbon adsorbents, which have very high surface areas and pore volumes comparable to the best commercial activated carbons. These porous carbons are useful for purifying gas and aqueous media from organic pollutants or adsorption of heavy metal ions from aqueous solutions. They also could be used as catalysts or electrodes in electrochemical applications.


Assuntos
Carbono/química , Lignina/química , Adsorção , Celulose/química , Porosidade , Propriedades de Superfície , Temperatura
19.
Carbohydr Polym ; 156: 223-234, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-27842817

RESUMO

Sugarcane bagasse and straw are generated in large volumes as by-products of agro-industrial production. They are an emerging valuable resource for the generation of hemicellulose-based materials and products, since they contain significant quantities of xylans (often twice as much as in hardwoods). Heteroxylans (yields of ca 20% based on xylose content in sugarcane bagasse and straw) were successfully isolated and purified using mild delignification followed by dimethyl sulfoxide (DMSO) extraction. Delignification with peracetic acid (PAA) was more efficient than traditional sodium chlorite (NaClO2) delignification for xylan extraction from both biomasses, resulting in higher extraction yields and purity. We have shown that the heteroxylans isolated from sugarcane bagasse and straw are acetylated glucuronoarabinoxylans (GAX), with distinct molecular structures. Bagasse GAX had a slightly lower glycosyl substitution molar ratio of Araf to Xylp to (0.5:10) and (4-O-Me)GlpA to Xylp (0.1:10) than GAX from straw (0.8:10 and 0.1:10 respectively), but a higher degree of acetylation (0.33 and 0.10, respectively). A higher frequency of acetyl groups substitution at position α-(1→3) (Xyl-3Ac) than at position α-(1→2) (Xyl-2Ac) was confirmed for both bagasse and straw GAX, with a minor ratio of diacetylation (Xyl-2,3Ac). The size and molecular weight distributions for the acetylated GAX extracted from the sugarcane bagasse and straw were analyzed using multiple-detection size-exclusion chromatography (SEC-DRI-MALLS). Light scattering data provided absolute molar mass values for acetylated GAX with higher average values than did standard calibration. Moreover, the data highlighted differences in the molar mass distributions between the two isolation methods for both types of sugarcane GAX, which can be correlated with the different Araf and acetyl substitution patterns. We have developed an empirical model for the molecular structure of acetylated GAX extracted from sugarcane bagasse and straw with PAA/DMSO through the integration of results obtained from glycosidic linkage analysis, 1H NMR spectroscopy and acetyl quantification. This knowledge of the structure of xylans in sugarcane bagasse and straw will provide a better understanding of the isolation-structure-properties relationship of these biopolymers and, ultimately, create new possibilities for the use of sugarcane xylan in high-value applications, such as biochemicals and bio-based materials.


Assuntos
Celulose/química , Xilanos/química , Xilanos/isolamento & purificação , Acetilação , Saccharum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA