Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39257796

RESUMO

The signaling molecule cyclic di-GMP (cdG) controls the switch between bacterial motility and biofilm production, and fluctuations in cellular levels of cdG have been implicated in Vibrio cholerae pathogenesis. Intracellular concentrations of cdG are controlled by the interplay of diguanylate cyclase (DGC) enzymes, which synthesize cdG to promote biofilms, and phosphodiesterase (PDE) enzymes, which hydrolyse cdG to drive motility. To track the complete regulatory logic of how V. cholerae responds to changing cdG levels, we followed a timecourse of overexpression of either the V. harveyi diguanylate cyclase QrgB or a variant of QrgB lacking catalytic activity (QrgB*). We find that QrgB increases cdG levels relative to QrgB* for 30 minutes after overexpression, but the effect of QrgB on cdG levels plateaus at 30 minutes, indicating tight adaptive control of cdG levels. In contrast, loss of VpsR, a master regulator activating biofilm formation upon binding to cdG, leads to higher baseline levels of cdG and continuously increasing cdG through 60 minutes after QrgB induction, revealing the existence of a negative feedback loop on cdG levels operating through VpsR. Through a combination of RNA polymerase ChIP-seq, RNA-seq, and genetic approaches, we show that transcription of a gene encoding a PDE, cdgC, is activated by VpsR at high cdG concentrations, mediating this negative feedback on cdG levels. We further identify a transcript encoded within, and antisense to, the cdgC open reading frame which we name sRNA negative regulator of CdgC (SnrC). RNA polymerase ChIP-seq and RNA-seq demonstrate SnrC to be expressed specifically under conditions of high cdG in the absence of VpsR. Ectopic SnrC expression increases cdG levels in a manner dependent on CdgC, demonstrating that its effect on cdG levels is likely through interference with CdgC production. Further, although cells lacking cdgC exhibit enhanced biofilm formation, these mutants are outcompeted by wild type V. cholerae in colonization assays that reward a combination of attachment, dispersal, and motility behaviors. These results underscore the importance of negative feedback regulation of cdG to maintain appropriate homeostatic levels for efficient transitioning between biofilm formation and motility, both of which are necessary over the course of the V. cholerae infection cycle.

2.
PLoS Pathog ; 20(8): e1012495, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39178317

RESUMO

There is a critical gap in knowledge about how Gram-negative bacterial pathogens, using survival strategies developed for other niches, cause lethal bacteremia. Facultative anaerobic species of the Enterobacterales order are the most common cause of Gram-negative bacteremia, including Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, Citrobacter freundii, and Enterobacter hormaechei. Bacteremia often leads to sepsis, a life-threatening organ dysfunction resulting from unregulated immune responses to infection. Despite a lack of specialization for this host environment, Gram-negative pathogens cause nearly half of bacteremia cases annually. Based on our existing Tn-Seq fitness factor data from a murine model of bacteremia combined with comparative genomics of the five Enterobacterales species above, we prioritized 18 conserved fitness genes or operons for further characterization. Mutants were constructed for all genes in all five species. Each mutant was used to cochallenge C57BL/6 mice via tail vein injection along with each respective wild-type strain to determine competitive indices for each fitness gene. Five fitness factor genes, when mutated, attenuated mutants in four or five species in the spleen and liver (tatC, ruvA, gmhB, wzxE, arcA). Five additional fitness factor genes or operons were validated as outcompeted by wild-type in three, four, or five bacterial species in the spleen (xerC, prc, apaGH, atpG, aroC). Overall, 17 of 18 fitness factor mutants were attenuated in at least one species in the spleen or liver. Together, these findings allow for the development of a model of bacteremia pathogenesis that may include future targets of therapy against bloodstream infections.


Assuntos
Bacteriemia , Genoma Bacteriano , Animais , Bacteriemia/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/imunologia , Enterobacteriaceae/genética , Enterobacteriaceae/patogenicidade , Proteínas de Bactérias/genética , Feminino , Modelos Animais de Doenças
3.
mBio ; 14(5): e0087523, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37623317

RESUMO

IMPORTANCE: To counteract infection with phage, bacteria have evolved a myriad of molecular defense systems. Some of these systems initiate a process called abortive infection, in which the infected cell kills itself to prevent phage propagation. However, such systems must be inhibited in the absence of phage infection to prevent spurious death of the host. Here, we show that the cyclic oligonucleotide based anti-phage signaling system (CBASS) accomplishes this by sensing intracellular folate molecules and only expressing this system in a group. These results enhance our understanding of the evolution of the seventh Vibrio cholerae pandemic and more broadly how bacteria defend themselves against phage infection.


Assuntos
Bacteriófagos , Vibrio cholerae , Vibrio cholerae/metabolismo , Percepção de Quorum/fisiologia , Bacteriófagos/genética , Transdução de Sinais
4.
Nat Microbiol ; 7(8): 1210-1220, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35817890

RESUMO

Vibrio cholerae biotype El Tor is perpetuating the longest cholera pandemic in recorded history. The genomic islands VSP-1 and VSP-2 distinguish El Tor from previous pandemic V. cholerae strains. Using a co-occurrence analysis of VSP genes in >200,000 bacterial genomes we built gene networks to infer biological functions encoded in these islands. This revealed that dncV, a component of the cyclic-oligonucleotide-based anti-phage signalling system (CBASS) anti-phage defence system, co-occurs with an uncharacterized gene vc0175 that we rename avcD for anti-viral cytodine deaminase. We show that AvcD is a deoxycytidylate deaminase and that its activity is post-translationally inhibited by a non-coding RNA named AvcI. AvcID and bacterial homologues protect bacterial populations against phage invasion by depleting free deoxycytidine nucleotides during infection, thereby decreasing phage replication. Homologues of avcD exist in all three domains of life, and bacterial AvcID defends against phage infection by combining traits of two eukaryotic innate viral immunity proteins, APOBEC and SAMHD1.


Assuntos
Bacteriófagos , Cólera , Vibrio cholerae , Bacteriófagos/genética , Cólera/microbiologia , Toxina da Cólera , Ilhas Genômicas , Humanos , Vibrio cholerae/genética
5.
Infect Immun ; 90(7): e0022422, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35762751

RESUMO

Klebsiella pneumoniae is a leading cause of Gram-negative bacteremia, which is a major source of morbidity and mortality worldwide. Gram-negative bacteremia requires three major steps: primary site infection, dissemination to the blood, and bloodstream survival. Because K. pneumoniae is a leading cause of health care-associated pneumonia, the lung is a common primary infection site leading to secondary bacteremia. K. pneumoniae factors essential for lung fitness have been characterized, but those required for subsequent bloodstream infection are unclear. To identify K. pneumoniae genes associated with dissemination and bloodstream survival, we combined previously and newly analyzed insertion site sequencing (InSeq) data from a murine model of bacteremic pneumonia. This analysis revealed the gene gmhB as important for either dissemination from the lung or bloodstream survival. In Escherichia coli, GmhB is a partially redundant enzyme in the synthesis of ADP-heptose for the lipopolysaccharide (LPS) core. To characterize its function in K. pneumoniae, an isogenic knockout strain (ΔgmhB) and complemented mutant were generated. During pneumonia, GmhB did not contribute to lung fitness and did not alter normal immune responses. However, GmhB enhanced bloodstream survival in a manner independent of serum susceptibility, specifically conveying resistance to spleen-mediated killing. In a tail-vein injection of murine bacteremia, GmhB was also required by K. pneumoniae, E. coli, and Citrobacter freundii for optimal fitness in the spleen and liver. Together, this study identifies GmhB as a conserved Gram-negative bacteremia fitness factor that acts through LPS-mediated mechanisms to enhance fitness in blood-filtering organs.


Assuntos
Bacteriemia , Infecções por Klebsiella , Difosfato de Adenosina , Animais , Bacteriemia/genética , Escherichia coli/genética , Heptoses , Klebsiella pneumoniae/genética , Lipopolissacarídeos , Camundongos
6.
J Bacteriol ; 203(23): e0024221, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34543105

RESUMO

Shigella flexneri is an intracellular human pathogen that invades colonic cells and causes bloody diarrhea. S. flexneri evolved from commensal Escherichia coli, and genome comparisons reveal that S. flexneri has lost approximately 20% of its genes through the process of pathoadaptation, including a disproportionate number of genes associated with the turnover of the nucleotide-based second messenger cyclic di-GMP (c-di-GMP); however, the remaining c-di-GMP turnover enzymes are highly conserved. c-di-GMP regulates many behavioral changes in other bacteria in response to changing environmental conditions, including biofilm formation, but this signaling system has not been examined in S. flexneri. In this study, we expressed VCA0956, a constitutively active c-di-GMP synthesizing diguanylate cyclase (DGC) from Vibrio cholerae, in S. flexneri to determine if virulence phenotypes were regulated by c-di-GMP. We found that expressing VCA0956 in S. flexneri increased c-di-GMP levels, and this corresponds with increased biofilm formation and reduced acid resistance, host cell invasion, and plaque size. We examined the impact of VCA0956 expression on the S. flexneri transcriptome and found that genes related to acid resistance were repressed, and this corresponded with decreased survival to acid shock. We also found that individual S. flexneri DGC mutants exhibit reduced biofilm formation and reduced host cell invasion and plaque size, as well as increased resistance to acid shock. This study highlights the importance of c-di-GMP signaling in regulating S. flexneri virulence phenotypes. IMPORTANCE The intracellular human pathogen Shigella causes dysentery, resulting in as many as one million deaths per year. Currently, there is no approved vaccine for the prevention of shigellosis, and the incidence of antimicrobial resistance among Shigella species is on the rise. Here, we explored how the widely conserved c-di-GMP bacterial signaling system alters Shigella behaviors associated with pathogenesis. We found that expressing or removing enzymes associated with c-di-GMP synthesis results in changes in Shigella's ability to form biofilms, invade host cells, form lesions in host cell monolayers, and resist acid stress.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Fósforo-Oxigênio Liases/metabolismo , Shigella flexneri/enzimologia , Shigella flexneri/patogenicidade , Aquicultura , GMP Cíclico/genética , GMP Cíclico/metabolismo , Genoma Bacteriano , Mutação , Fósforo-Oxigênio Liases/genética , Transcriptoma , Virulência
7.
Proc Natl Acad Sci U S A ; 117(30): 17984-17991, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32661164

RESUMO

Cellular differentiation is a fundamental strategy used by cells to generate specialized functions at specific stages of development. The bacterium Caulobacter crescentus employs a specialized dimorphic life cycle consisting of two differentiated cell types. How environmental cues, including mechanical inputs such as contact with a surface, regulate this cell cycle remain unclear. Here, we find that surface sensing by the physical perturbation of retracting extracellular pilus filaments accelerates cell-cycle progression and cellular differentiation. We show that physical obstruction of dynamic pilus activity by chemical perturbation or by a mutation in the outer-membrane pilus secretin CpaC stimulates early initiation of chromosome replication. In addition, we find that surface contact stimulates cell-cycle progression by demonstrating that surface-stimulated cells initiate early chromosome replication to the same extent as planktonic cells with obstructed pilus activity. Finally, we show that obstruction of pilus retraction stimulates the synthesis of the cell-cycle regulator cyclic diguanylate monophosphate (c-di-GMP) through changes in the activity and localization of two key regulatory histidine kinases that control cell fate and differentiation. Together, these results demonstrate that surface contact and sensing by alterations in pilus activity stimulate C. crescentus to bypass its developmentally programmed temporal delay in cell differentiation to more quickly adapt to a surface-associated lifestyle.


Assuntos
Fenômenos Fisiológicos Bacterianos , Caulobacter crescentus/fisiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Ciclo Celular , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Replicação do DNA , Fímbrias Bacterianas/fisiologia , Modelos Biológicos , Mutação
8.
Mol Plant Microbe Interact ; 33(2): 296-307, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31851880

RESUMO

Dickeya dadantii is a plant-pathogenic bacterium that causes soft-rot in a wide range of plants. Although we have previously demonstrated that cyclic bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), a bacterial secondary messenger, plays a central role in virulence regulation in D. dadantii, the upstream signals that modulate c-di-GMP remain enigmatic. Using a genome-wide transposon mutagenesis approach of a Δhfq mutant strain that has high c-di-GMP and reduced motility, we uncovered transposon mutants that recovered the c-di-GMP-mediated repression on swimming motility. A number of these mutants harbored transposon insertions in genes encoding tricarboxylic acid (TCA) cycle enzymes. Two of these TCA transposon mutants were studied further by generating chromosomal deletions of the fumA gene (encoding fumarase) and the sdhCDAB operon (encoding succinate dehydrogenase). Disruption of the TCA cycle in these deletion mutants resulted in reduced intracellular c-di-GMP and enhanced production of pectate lyases (Pels), a major plant cell wall-degrading enzyme (PCWDE) known to be transcriptionally repressed by c-di-GMP. Consistent with this result, addition of TCA cycle intermediates such as citrate also resulted in increased c-di-GMP levels and decreased production of Pels. Additionally, we found that a diguanylate cyclase GcpA was solely responsible for the observed citrate-mediated modulation of c-di-GMP. Finally, we demonstrated that addition of citrate induced not only an overproduction of GcpA protein but also a concomitant repression of the c-di-GMP-degrading phosphodiesterase EGcpB which, together, resulted in an increase in the intracellular concentration of c-di-GMP. In summary, our report demonstrates that bacterial respiration and respiration metabolites serve as signals for the regulation of c-di-GMP signaling.


Assuntos
Proteínas de Bactérias , GMP Cíclico/análogos & derivados , Gammaproteobacteria , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/microbiologia , GMP Cíclico/genética , GMP Cíclico/metabolismo , Dickeya , Gammaproteobacteria/enzimologia , Gammaproteobacteria/genética , Regulação Bacteriana da Expressão Gênica/genética , Mutação
9.
J Bacteriol ; 202(1)2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31611290

RESUMO

In Escherichia coli and Salmonella, the c-di-GMP effector YcgR inhibits flagellar motility by interacting directly with the motor to alter both its bias and speed. Here, we demonstrate that in both of these bacteria, YcgR acts sequentially, altering motor bias first and then decreasing motor speed. We show that when c-di-GMP levels are high, deletion of ycgR restores wild-type motor behavior in E. coli, indicating that YcgR is the only motor effector in this bacterium. Yet, motility and chemotaxis in soft agar do not return to normal, suggesting that there is a second mechanism that inhibits motility under these conditions. In Salmonella, c-di-GMP-induced synthesis of extracellular cellulose has been reported to entrap flagella and to be responsible for the YcgR-independent motility defect. We found that this is not the case in E. coli Instead, we found through reversion analysis that deletion of rssB, which codes for a response regulator/adaptor protein that normally directs ClpXP protease to target σS for degradation, restored wild-type motility in the ycgR mutant. Our data suggest that high c-di-GMP levels may promote altered interactions between these proteins to downregulate flagellar gene expression.IMPORTANCE Flagellum-driven motility has been studied in E. coli and Salmonella for nearly half a century. Over 60 genes control flagellar assembly and function. The expression of these genes is regulated at multiple levels in response to a variety of environmental signals. Cues that elevate c-di-GMP levels, however, inhibit motility by direct binding of the effector YcgR to the flagellar motor. In this study conducted mainly in E. coli, we show that YcgR is the only effector of motor control and tease out the order of YcgR-mediated events. In addition, we find that the σS regulator protein RssB contributes to negative regulation of flagellar gene expression when c-di-GMP levels are elevated.


Assuntos
GMP Cíclico/análogos & derivados , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/genética , Flagelos/fisiologia , Regulon/fisiologia , Fatores de Transcrição/fisiologia , GMP Cíclico/fisiologia , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica
10.
J Bacteriol ; 201(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31405916

RESUMO

Cyclic di-GMP (c-di-GMP) is a bacterial second messenger molecule that is important in the biology of Vibrio cholerae, but the molecular mechanisms by which this molecule regulates downstream phenotypes have not been fully characterized. We have previously shown that the Vc2 c-di-GMP-binding riboswitch, encoded upstream of the gene tfoY, functions as an off switch in response to c-di-GMP. However, the mechanism by which c-di-GMP controls expression of tfoY has not been fully elucidated. During our studies of this mechanism, we determined that c-di-GMP binding to Vc2 also controls the abundance and stability of upstream noncoding RNAs with 3' ends located immediately downstream of the Vc2 riboswitch. Our results suggest these putative small RNAs (sRNAs) are not generated by transcriptional termination but rather by preventing degradation of the upstream untranslated RNA when c-di-GMP is bound to Vc2.IMPORTANCE Riboswitches are typically RNA elements located in the 5' untranslated region of mRNAs. They are highly structured and specifically recognize and respond to a given chemical cue to alter transcription termination or translation initiation. In this work, we report a novel mechanism of riboswitch-mediated gene regulation in Vibrio cholerae whereby a 3' riboswitch, named Vc2, controls the stability of upstream untranslated RNA upon binding to its cognate ligand, the second messenger cyclic di-GMP, leading to the accumulation of previously undescribed putative sRNAs. We further demonstrate that binding of the ligand to the riboswitch prevents RNA degradation. As binding of riboswitches to their ligands often produces compactly structured RNA, we hypothesize this mechanism of gene regulation is widespread.


Assuntos
GMP Cíclico/análogos & derivados , Regulação Bacteriana da Expressão Gênica/genética , RNA Bacteriano/genética , Riboswitch/genética , Vibrio cholerae/genética , GMP Cíclico/genética , Estabilidade de RNA/genética , Sistemas do Segundo Mensageiro/genética , Transcrição Gênica/genética
11.
Cell Host Microbe ; 25(4): 471-473, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974077

RESUMO

In recent work, Whiteley et al. (2019) define a family of bacterial nucleotidyltransferases (CD-NTases) capable of synthesizing pyrimidine containing cyclic dinucleotides and cyclic trinucleotides. CD-NTases are broadly distributed across bacterial phyla, suggesting that they play important roles in bacterial physiology and modulation of the metazoan host innate immune system.


Assuntos
Bactérias/metabolismo , Nucleotídeos Cíclicos/metabolismo , Pirimidinas/metabolismo , Sistemas do Segundo Mensageiro , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
12.
Environ Microbiol ; 21(8): 2755-2771, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30895662

RESUMO

Dickeya dadantii is a plant pathogen that causes soft rot disease on vegetable and potato crops. To successfully cause infection, this pathogen needs to coordinately modulate the expression of genes encoding several virulence determinants, including plant cell wall degrading enzymes (PCWDEs), type III secretion system (T3SS) and flagellar motility. Here, we uncover a novel feed-forward signalling circuit for controlling virulence. Global RNA chaperone Hfq interacts with an Hfq-dependent sRNA ArcZ and represses the translation of pecT, encoding a LysR-type transcriptional regulator. We demonstrate that the ability of ArcZ to be processed to a 50 nt 3'- end fragment is essential for its regulation of pecT. PecT down-regulates PCWDE and the T3SS by repressing the expression of a global post-transcriptional regulator- (RsmA-) associated sRNA encoding gene rsmB. In addition, we show that the protein levels of two cyclic di-GMP (c-di-GMP) diguanylate cyclases (DGCs), GcpA and GcpL, are repressed by Hfq. Further studies show that both DGCs are essential for the Hfq-mediated post-transcriptional regulation on RsmB. Overall, our report provides new insights into the interplays between ubiquitous signalling transduction systems that were most studied independently and sheds light on multitiered regulatory mechanisms for a precise disease regulation in bacteria.


Assuntos
GMP Cíclico/análogos & derivados , Enterobacteriaceae/patogenicidade , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Transdução de Sinais , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , GMP Cíclico/metabolismo , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas/microbiologia , Proteínas de Ligação a RNA/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Virulência/genética , Fatores de Virulência/genética
13.
J Bacteriol ; 200(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30249708

RESUMO

Bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that regulates processes, such as biofilm formation and virulence. During degradation, c-di-GMP is first linearized to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG) and subsequently hydrolyzed to two GMPs by a previously unknown enzyme, which was recently identified in Pseudomonas aeruginosa as the 3'-to-5' exoribonuclease oligoribonuclease (Orn). Mutants of orn accumulated pGpG, which inhibited the linearization of c-di-GMP. This product inhibition led to elevated c-di-GMP levels, resulting in increased aggregate and biofilm formation. Thus, the hydrolysis of pGpG is crucial to the maintenance of c-di-GMP homeostasis. How species that utilize c-di-GMP signaling but lack an orn ortholog hydrolyze pGpG remains unknown. Because Orn is an exoribonuclease, we asked whether pGpG hydrolysis can be carried out by genes that encode protein domains found in exoribonucleases. From a screen of these genes from Vibrio cholerae and Bacillus anthracis, we found that only enzymes known to cleave oligoribonucleotides (orn and nrnA) rescued the P. aeruginosa Δorn mutant phenotypes to the wild type. Thus, we tested additional RNases with demonstrated activity against short oligoribonucleotides. These experiments show that only exoribonucleases previously reported to degrade short RNAs (nrnA, nrnB, nrnC, and orn) can also hydrolyze pGpG. A B. subtilisnrnA nrnB mutant had elevated c-di-GMP, suggesting that these two genes serve as the primary enzymes to degrade pGpG. These results indicate that the requirement for pGpG hydrolysis to complete c-di-GMP signaling is conserved across species. The final steps of RNA turnover and c-di-GMP turnover appear to converge at a subset of RNases specific for short oligoribonucleotides.IMPORTANCE The bacterial bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) signaling molecule regulates complex processes, such as biofilm formation. c-di-GMP is degraded in two-steps, linearization into pGpG and subsequent cleavage to two GMPs. The 3'-to-5' exonuclease oligoribonuclease (Orn) serves as the enzyme that degrades pGpG in Pseudomonas aeruginosa Many phyla contain species that utilize c-di-GMP signaling but lack an Orn homolog, and the protein that functions to degrade pGpG remains uncharacterized. Here, systematic screening of genes encoding proteins containing domains found in exoribonucleases revealed a subset of genes encoded within the genomes of Bacillus anthracis and Vibrio cholerae that degrade pGpG to GMP and are functionally analogous to Orn. Feedback inhibition by pGpG is a conserved process, as strains lacking these genes accumulate c-di-GMP.


Assuntos
Bacillus anthracis/enzimologia , GMP Cíclico/análogos & derivados , Exorribonucleases/metabolismo , Vibrio cholerae/enzimologia , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Exorribonucleases/genética , Hidrólise , Mutação , Pseudomonas aeruginosa/enzimologia , Sistemas do Segundo Mensageiro , Transdução de Sinais
14.
Mol Microbiol ; 110(2): 219-238, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30079982

RESUMO

To permanently attach to surfaces, Caulobacter crescentusproduces a strong adhesive, the holdfast. The timing of holdfast synthesis is developmentally regulated by cell cycle cues. When C. crescentusis grown in a complex medium, holdfast synthesis can also be stimulated by surface sensing, in which swarmer cells rapidly synthesize holdfast in direct response to surface contact. In contrast to growth in complex medium, here we show that when cells are grown in a defined medium, surface contact does not trigger holdfast synthesis. Moreover, we show that in a defined medium, flagellum synthesis and regulation of holdfast production are linked. In these conditions, mutants lacking a flagellum attach to surfaces over time more efficiently than either wild-type strains or strains harboring a paralyzed flagellum. Enhanced adhesion in mutants lacking flagellar components is due to premature holdfast synthesis during the cell cycle and is regulated by the holdfast synthesis inhibitor HfiA. hfiA transcription is reduced in flagellar mutants and this reduction is modulated by the diguanylate cyclase developmental regulator PleD. We also show that, in contrast to previous predictions, flagella are not necessarily required for C. crescentus surface sensing in the absence of flow, and that arrest of flagellar rotation does not stimulate holdfast synthesis. Rather, our data support a model in which flagellum assembly feeds back to control holdfast synthesis via HfiA expression in a c-di-GMP-dependent manner under defined nutrient conditions.


Assuntos
Biofilmes/efeitos dos fármacos , Caulobacter crescentus/efeitos dos fármacos , Flagelos/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Caulobacter crescentus/genética , Caulobacter crescentus/crescimento & desenvolvimento , Ciclo Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Retroalimentação Fisiológica , Mutação , Estatísticas não Paramétricas
15.
Proc Natl Acad Sci U S A ; 115(26): E6048-E6055, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891656

RESUMO

Sensing and responding to environmental changes is essential for bacteria to adapt and thrive, and nucleotide-derived second messengers are central signaling systems in this process. The most recently identified bacterial cyclic dinucleotide second messenger, 3', 3'-cyclic GMP-AMP (cGAMP), was first discovered in the El Tor biotype of Vibrio cholerae The cGAMP synthase, DncV, is encoded on the VSP-1 pathogenicity island, which is found in all El Tor isolates that are responsible for the current seventh pandemic of cholera but not in the classical biotype. We determined that unregulated production of DncV inhibits growth in El Tor V. cholerae but has no effect on the classical biotype. This cGAMP-dependent phenotype can be suppressed by null mutations in vc0178 immediately 5' of dncV in VSP-1. VC0178 [renamed as cGAMP-activated phospholipase in Vibrio (CapV)] is predicted to be a patatin-like phospholipase, and coexpression of capV and dncV is sufficient to induce growth inhibition in classical V. cholerae and Escherichia coli Furthermore, cGAMP binds to CapV and directly activates its hydrolase activity in vitro. CapV activated by cGAMP in vivo degrades phospholipids in the cell membrane, releasing 16:1 and 18:1 free fatty acids. Together, we demonstrate that cGAMP activates CapV phospholipase activity to target the cell membrane and suggest that acquisition of this second messenger signaling pathway may contribute to the emergence of the El Tor biotype as the etiological agent behind the seventh cholera pandemic.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/enzimologia , Nucleotídeos Cíclicos/metabolismo , Fosfolipases/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Vibrio cholerae/enzimologia , Proteínas de Bactérias/genética , Membrana Celular/genética , Nucleotídeos Cíclicos/genética , Fosfolipases/genética , Vibrio cholerae/genética
16.
Front Microbiol ; 9: 1121, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896182

RESUMO

Second messengers are intracellular molecules regulated by external stimuli known as first messengers that are used for rapid organismal responses to dynamic environmental changes. Cyclic di-AMP (c-di-AMP) is a relatively newly discovered second messenger implicated in cell wall homeostasis in many pathogenic bacteria. C-di-AMP is synthesized from ATP by diadenylyl cyclases (DAC) and degraded by specific c-di-AMP phosphodiesterases (PDE). C-di-AMP DACs and PDEs are present in all sequenced cyanobacteria, suggesting roles for c-di-AMP in the physiology and/or development of these organisms. Despite conservation of these genes across numerous cyanobacteria, the functional roles of c-di-AMP in cyanobacteria have not been well-investigated. In a unique feature of cyanobacteria, phylogenetic analysis indicated that the broadly conserved DAC, related to CdaA/DacA, is always co-associated in an operon with genes critical for controlling cell wall synthesis. To investigate phenotypes regulated by c-di-AMP in cyanobacteria, we overexpressed native DAC (sll0505) and c-di-AMP PDE (slr0104) genes in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) to increase and decrease intracellular c-di-AMP levels, respectively. DAC- and PDE-overexpression strains, showed abnormal aggregation phenotypes, suggesting functional roles for regulating c-di-AMP homeostasis in vivo. As c-di-AMP may be implicated in osmotic responses in cyanobacteria, we tested whether sorbitol and NaCl stresses impacted expression of sll0505 and slr0104 or intracellular c-di-AMP levels in Synechocystis. Additionally, to determine the range of cyanobacteria in which c-di-AMP may function, we assessed c-di-AMP levels in two unicellular cyanobacteria, i.e., Synechocystis and Synechococcus elongatus PCC 7942, and two filamentous cyanobacteria, i.e., Fremyella diplosiphon and Anabaena sp. PCC 7120. C-di-AMP levels responded differently to abiotic stress signals in distinct cyanobacteria strains, whereas salt stress uniformly impacted another second messenger cyclic di-GMP in cyanobacteria. Together, these results suggest regulation of c-di-AMP homeostasis in cyanobacteria and implicate a role for the second messenger in maintaining cellular fitness in response to abiotic stress.

17.
Mol Plant Pathol ; 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29390166

RESUMO

Dickeya dadantii 3937 secretes pectate lyases (Pels) to degrade plant cell walls. Previously, we have demonstrated that EGcpB and EcpC function as bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP)-specific phosphodiesterases (PDEs) to positively regulate Pel production. However, the diguanylate cyclase (DGC) responsible for the synthesis of c-di-GMP and the dichotomous regulation of Pel has remained a mystery. Here, we identified GcpA as the dominant DGC to negatively regulate Pel production by the specific repression of pelD gene expression. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays revealed that the expression levels of histone-like, nucleoid-structuring protein encoding gene hns and post-transcriptional regulator encoding genes rsmA and rsmB were significantly affected by GcpA. Deletion of hns or rsmB in the gcpAD418A site-directed mutant restored its Pel production and pelD expression, demonstrating that H-NS and RsmB contribute to the GcpA-dependent regulation of Pel in D. dadantii. In addition, RsmB expression was subject to positive regulation by H-NS. Thus, we propose a novel pathway consisting of GcpA-H-NS-RsmB-RsmA-pelD that controls Pel production in D. dadantii. Furthermore, we showed that H-NS and RsmB are responsible for the GcpA-dependent regulation of motility and type III secretion system (T3SS) gene expression, respectively. Of the two PDEs involved in the regulation of Pels, only EGcpB regulates pelD expression through the same pathway as GcpA.

18.
J Bacteriol ; 200(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29311281

RESUMO

3',5'-Cyclic diguanylic acid (c-di-GMP) is a bacterial second messenger molecule that is a key global regulator in Vibrio cholerae, but the molecular mechanisms by which this molecule regulates downstream phenotypes have not been fully characterized. One such regulatory factor that may respond to c-di-GMP is the Vc2 c-di-GMP-binding riboswitch that is hypothesized to control the expression of the downstream putative transcription factor TfoY. Although much is known about the physical and structural properties of the Vc2 riboswitch aptamer, the nature of its expression and function in V. cholerae has not been investigated. Here, we show that Vc2 functions as an off switch to inhibit TfoY production at intermediate and high concentrations of c-di-GMP. At low c-di-GMP concentrations, TfoY production is induced to stimulate dispersive motility. We also observed increased transcription of tfoY at high intracellular concentrations of c-di-GMP, but this induction is independent of the Vc2 riboswitch and occurs via transcriptional control of promoters upstream of tfoY by the previously identified c-di-GMP dependent transcription factor VpsR. Our results show that TfoY is induced by c-di-GMP at both low and high intracellular concentrations of c-di-GMP via posttranscriptional and transcriptional mechanisms, respectively. This regulation contributes to the formation of three distinct c-di-GMP signaling states in V. choleraeIMPORTANCE The bacterial pathogen Vibrio cholerae must transition between life in aquatic environmental reservoirs and life in the gastrointestinal tract. Biofilm formation and bacterial motility, and their control by the second messenger molecule c-di-GMP, play integral roles in this adaptation. Here, we define the third major mechanism by which c-di-GMP controls bacterial motility. This pathway utilizes a noncoding RNA element known as a riboswitch that, when bound to c-di-GMP, inhibits the expression of the transcription factor TfoY. TfoY production switches V. cholerae motility from a dense to a dispersive state. Our results suggest that the c-di-GMP signaling network of V. cholerae can exist in at least three distinct states to regulate biofilm formation and motility.


Assuntos
Proteínas de Bactérias/genética , GMP Cíclico/análogos & derivados , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/genética , Transcrição Gênica , Vibrio cholerae/genética , Biofilmes , GMP Cíclico/genética , Movimento , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional/genética , Riboswitch/genética , Transdução de Sinais/genética , Vibrio cholerae/fisiologia
19.
Methods Mol Biol ; 1657: 71-84, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28889287

RESUMO

The expression and activity of diguanylate cyclase (DGC) and phosphodiesterase (PDE) enzymes are responsible for modulating and maintaining the intracellular concentration of the bacterial second messenger cyclic diguanosine-monophosphate (c-di-GMP). Here, we describe an in vitro method for the spectrophotometric detection and quantification of DGC catalyzed c-di-GMP synthesis through adaptation of the EnzChek® Pyrophosphate Assay Kit. We also outline a method for the quantification of c-di-GMP produced in this in vitro reaction using Ultra-Performance Liquid Chromatography tandem Mass Spectrometry (UPLC-MS/MS). These methods can be leveraged for a number of experimental applications including the evaluation of enzyme activity for the in vitro synthesis of c-di-GMP, examination of how molecular signals impact these activities, identifying the catalytic properties of hybrid DGC-PDE proteins, and the development of DGC inhibitors.


Assuntos
GMP Cíclico/análogos & derivados , Espectrometria de Massas , Espectrofotometria , Cromatografia Líquida de Alta Pressão , GMP Cíclico/biossíntese , GMP Cíclico/química , Proteínas de Escherichia coli/metabolismo , Cinética , Espectrometria de Massas/métodos , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Sistemas do Segundo Mensageiro , Espectrofotometria/métodos , Espectrometria de Massas em Tandem
20.
J Bacteriol ; 199(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28674069

RESUMO

Vibrio cholerae is a human pathogen that alternates between growth in environmental reservoirs and infection of human hosts, causing severe diarrhea. The second messenger cyclic di-GMP (c-di-GMP) mediates this transition by controlling a wide range of functions, such as biofilms, virulence, and motility. Here, we report that c-di-GMP induces expression of the extracellular protein secretion (eps) gene cluster, which encodes the type II secretion system (T2SS) in V. cholerae Analysis of the eps genes confirmed the presence of two promoters located upstream of epsC, the first gene in the operon, one of which is induced by c-di-GMP. This induction is directly mediated by the c-di-GMP-binding transcriptional activator VpsR. Increased expression of the eps operon did not impact secretion of extracellular toxin or biofilm formation but did increase expression of the pseudopilin protein EpsG on the cell surface.IMPORTANCE Type II secretion systems (T2SSs) are the primary molecular machines by which Gram-negative bacteria secrete proteins and protein complexes that are folded and assembled in the periplasm. The substrates of T2SSs include extracellular factors, such as proteases and toxins. Here, we show that the widely conserved second messenger cyclic di-GMP (c-di-GMP) upregulates expression of the eps genes encoding the T2SS in the pathogen V. cholerae via the c-di-GMP-dependent transcription factor VpsR.


Assuntos
Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Sistemas de Secreção Tipo II/genética , Vibrio cholerae/genética , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Toxina da Cólera/genética , Toxina da Cólera/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Óperon , Regiões Promotoras Genéticas , Vibrio cholerae/metabolismo , Vibrio cholerae/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA