Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Appl Radiat Isot ; 200: 110958, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37506481

RESUMO

At the Facility for Rare Isotope Beams (FRIB), an oven-ion source combination was used to create rare isotope beams in support of the stand-alone user beam program of the ReAccelerator (ReA) facility. This ion source, called Batch-Mode Ion Source (BMIS), was loaded with enriched stable nuclides (30Si, 50Cr, and 58Fe) and long-lived radionuclides (26Al, 32Si). The introduced samples, herein designated as source samples, were thermally volatilized in the BMIS oven, and then ionization was used to generate the required beams. Owing to the different chemical behavior of the used samples, it was important to tailor the sample loading process for each desired beam species. An important parameter here is the volatility of the introduced species, which influences the adequate release of the isotope of interest. Additionally, any co-present, volatile components will affect the ion yields of the desired isotope, while isobaric contaminants will decrease the beam purity. To manufacture isotope source samples that meet these characteristics, various chemical methodologies were developed. All prepared samples were successfully used in BMIS to deliver beams for various user beam experiments. The here-established sample preparation techniques will greatly aid future efforts in developing offline rare-isotope beams.

2.
Appl Radiat Isot ; 199: 110855, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37302300

RESUMO

The quest to improve the quality of nuclear data, such as half-lives, transition yields, and reaction cross-sections, is a shared endeavor among various areas of nuclear science. 48V is a vanadium isotope for which experimental data on neutron reaction cross-sections is needed. However, traditional isotope production techniques cannot produce 48V with high enough isotopic purity for some of these measurements. "Isotope harvesting" at the Facility for Rare Isotope Beams (FRIB) is a new isotope production technique that could potentially yield 48V with the necessary purity for such studies. In this case, 48Cr would be collected and allowed to generate 48V that can be separated from undecayed 48Cr to yield highly pure 48V. Thus, any protocol for producing pure 48V via isotope harvesting would involve utilizing a separation technique that can effectively separate 48Cr and 48V. In this study, the radiotracers 51Cr and 48V were used to develop possible radiochemical separation methodologies, which can be translated to obtain high purity 48V via this novel isotope production method. The developed protocols utilize either ion exchange or extraction chromatographic resins. Separations of 51Cr and 48V with AG 1-X8 anion exchange resin respectively resulted in recoveries of 95.6(26)% and 96.2(12)% with radionuclidic purities of 92(2)% and 99(1)%. An even more effective Cr and V separation was obtained with an extraction chromatographic resin (TRU resin) and 10 M HNO3 loading solution. Here, 51Cr and 48V respectively had recoveries of 94.1(28)% and 96.2(13)% with high radionuclidic purities (100(2)% and 100(1)%) in small volumes (8.81(8) mL and 5.39(16) mL). This study suggests that, to maximize the yield and isotopic purity of 48V, the best production protocol would involve utilizing two separations with TRU resin and 10 M HNO3 to isolate 48Cr and purify the generated 48V.

3.
Appl Radiat Isot ; 197: 110831, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37130469

RESUMO

Tungsten is a commonly used material at many heavy-ion beam facilities, and it often becomes activated due to interactions with a beam. Many of the activation products are useful in basic and applied sciences if they can be recovered efficiently. In order to develop the radiochemistry for harvesting group (IV) elements from irradiated tungsten, a heavy-ion beam containing 88Zr was embedded into a stack of tungsten foils at the National Superconducting Cyclotron Laboratory and a separation methodology was devised to recover the 88Zr. The foils were dissolved in 30% hydrogen peroxide, and the 88Zr was chemically purified from the tungsten matrix and from other co-implanted radionuclides (such as 85Sr and 88Y) using strong cation-exchange (AG MP-50) chromatographic resin in sulfuric acid media. The procedure provided 88Zr in approximately 60 mL 0.5 M sulfuric acid with no detectable radio-impurities. The overall recovery yield for 88Zr was (92.3 ± 1.2)%. This proof-of-concept experiment has facilitated the development of methodologies to harvest from tungsten and tungsten-alloy parts that are regularly irradiated at heavy-ion beam facilities.

4.
Appl Radiat Isot ; 189: 110414, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36095995

RESUMO

During routine operation of the Facility for Rare Isotope Beams (FRIB), radionuclides will accumulate in both the aqueous beam dump and along the beamline in the process of beam purification. These byproduct radionuclides, many of which are far from stability, can be collected and purified for use in other scientific applications in a process called isotope harvesting. In this work, the viability of 88Zr harvesting from solid components was investigated at the National Superconducting Cyclotron Laboratory. A secondary 88Zr beam was stopped in a series of collectors comprised of Al, Cu, W, and Au foils. This work details irradiation of the collector foils and the subsequent radiochemical processing to isolate the deposited 88Zr (and its daughter 88Y) from them. Total average recovery from the Al, Cu, and Au collector foils was (91.3 ± 8.9) % for 88Zr and (95.0 ± 5.8) % for 88Y, respectively, which is over three times higher recovery than in a previous aqueous-phase harvesting experiment. The utility of solid-phase isotope harvesting to access elements such as Zr that readily hydrolyze in near-neutral pH aqueous conditions has been demonstrated for application to harvesting from solid components at FRIB.


Assuntos
Ciclotrons , Zircônio , Radioquímica/métodos , Radioisótopos , Compostos Radiofarmacêuticos
5.
ACS Omega ; 7(29): 25860-25873, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35910120

RESUMO

At the Facility for Rare Isotope Beams (FRIB), interactions between heavy-ion beams and beam-dump water will create a wide variety of radionuclides which can be accessed by a technique known as "isotope harvesting". However, irradiation of water is always accompanied by the creation of numerous radical, ionic, and molecular radiolysis products. Some of the radiolysis products have sufficiently long lifetimes to accumulate in the irradiated water and affect the harvesting chemistry. Here we investigate the formation of hydrogen peroxide, molecular hydrogen, and molecular oxygen during a high-intensity proton irradiation of a flowing-water isotope-harvesting target and compare the experimental results to simulations. The simulations kinetically model the chemical reactions occurring in the homogeneous phase of radiolysis in flowing water and establish an "effective yield". In both the experiment and simulations, the bulk quantities of H2, H2O2, and O2 are considerably lower than predicted by primary radiolysis yields (escape yields), meaning that in the high beam intensity regime the homogeneous phase reactions have a considerable impact on the overall chemical composition of the water. Further, it could be shown that for radiation which is characterized by a limited linear energy transfer, such as the here applied protons, the bulk outcome of the microscopic kinetic modeling could be estimated by a simplified steady-state model.

6.
Sci Rep ; 12(1): 1433, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082335

RESUMO

A flowing-water target was irradiated with a 150 MeV/nucleon beam of 78Kr at the National Superconducting Cyclotron Laboratory to produce 77Kr and 76Kr. Real-time gamma-imaging measurements revealed the mass transport of the krypton radioisotopes through the target-water processing, or "isotope harvesting", system. The production rates were determined to be 2.7(1) × 10-4 nuclei of 76Kr and 1.18(6) × 10-2 nuclei of 77Kr formed per incident 78Kr ion. Utilizing an off-gas processing line as part of the isotope harvesting system, a total of 7.2(1) MBq of 76Kr and 19.1(6) MBq of 77Kr were collected in cold traps. Through the decay, the daughter radionuclides 76Br and 77Br were generated and removed from the traps with an average efficiency of 77 ± 12%. Due to the differences in half-lives of 76Kr and 77Kr, it was possible to isolate a pure sample of 76Br with 99.9% radionuclidic purity. The successful collection of krypton radioisotopes to generate 76Br and 77Br demonstrates the feasibility of gas-phase isotope harvesting from irradiated accelerator cooling-water. Larger-scale collections are planned for collecting by-product radionuclides from the Facility for Rare Isotope Beams.

7.
Appl Radiat Isot ; 179: 109994, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34775271

RESUMO

A sample of 47Ca produced through isotope harvesting at the National Superconducting Cyclotron Laboratory was used to measure branching ratios of 7.17(5)%, 7.11(5)%, and 75.0(5)% for the 489.2, 807.9, and 1297.1 keV characteristic gamma rays, respectively. Based on these updated branching ratios, the ground state to ground state 47Ca to 47Sc beta decay branching ratio has been indirectly measured as 17.7(5)% and the ground state to 1297.1 keV excited state as 82.2(5)%. These values represent a greatly increased precision for all five branching ratios compared to the currently accepted values (Burrows, 2007). The measurements presented here were made relative to the ingrown 47Sc daughter in a47Ca sample and the well-established 159.4 keV gamma-ray branching ratio and the half-life for the decay of 47Sc (Reher et al., 1986; Meadows and Mode, 1968; Mommsen et al., 1980). These measurements were supported by verifying that the half-lives measured from characteristic gamma-ray peaks over multiple spectra for both 47Ca and 47Sc were consistent with previously reported values. Additionally, the half-lives of both 47Ca and 47Sc were independently measured with Liquid Scintillation Counting to reverify the previously reported values used in this study to find updated gamma-ray branching ratio values.

8.
ACS Omega ; 5(43): 27864-27872, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33163769

RESUMO

An experiment was performed at the National Superconducting Cyclotron Laboratory using a 140 MeV/nucleon 48Ca beam and a flowing-water target to produce 47Ca for the first time with this production route. A production rate of 0.020 ± 0.004 47Ca nuclei per incoming beam particle was measured. An isotope harvesting system attached to the target was used to collect radioactive cationic products, including 47Ca, from the water on a cation-exchange resin. The 47Ca collected was purified using three separation methods optimized for this work: (1) DGA extraction chromatography resin with HNO3 and HCl, (2) AG MP-50 cation-exchange resin with an increasing concentration gradient of HCl, and (3) AG MP-50 cation-exchange resin with a methanolic HCl gradient. These methods resulted in ≥99 ± 2% separation yield of 47Ca with 100% radionuclidic purity within the limits of detection for HPGe measurements. Inductively coupled plasma-optical emission spectrometry (ICP-OES) was used to identify low levels of stable ions in the water of the isotope harvesting system during the irradiation and in the final purified solution of 47Ca. For the first time, this experiment demonstrated the feasibility of the production, collection, and purification of 47Ca through isotope harvesting for the generation of 47Sc for nuclear medicine applications.

9.
Appl Radiat Isot ; 158: 109049, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32174374

RESUMO

A flowing-water target was irradiated with a 140 MeV/u, 8 nA 40Ca20+ beam to test the feasibility of isotope harvesting at the upcoming Facility for Rare Isotope Beams. Among other radionuclides, 2.6(2)E-6 48Cr and 5.6(5)E-6 28 Mg nuclei were formed for every impingent 40Ca and were collected through ion exchange. Radiolysis-induced molecular hydrogen evolved from the target at an initial rate of 0.91(9) H2 molecules per 100 eV of beam energy deposited. No radiation-accelerated corrosion of the target material was observed.

10.
J Control Release ; 269: 100-109, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29122662

RESUMO

Liposomes are nanoparticles used in drug delivery that distribute over several days in humans and larger animals. Radiolabeling with long-lived positron emission tomography (PET) radionuclides, such as manganese-52 (52Mn, T½=5.6days), allow the imaging of this biodistribution. We report optimized protocols for radiolabeling liposomes with 52Mn, through both remote-loading and surface labeling. For comparison, liposomes were also remote-loaded and surface labeled with copper-64 (64Cu, T½=12.7h) through conventional means. The chelator DOTA was used in all cases. The in vivo stability of radiometal chelates is widely debated but studies that mimic a realistic in vivo setting are lacking. Therefore, we employed these four radiolabeled liposome types as platforms to demonstrate a new concept for such in vivo evaluation, here of the chelates 52Mn-DOTA and 64Cu-DOTA. This was done by comparing "shielded" remote-loaded with "exposed" surface labeled variants in a CT26 tumor-bearing mouse model. Remote loading (90min at 55°C) and surface labeling (55°C for 2h) of 52Mn gave excellent radiolabeling efficiencies of 97-100% and 98-100% respectively, and the liposome biodistribution was imaged by PET for up to 8days. Liposomes with surface-conjugated 52Mn-DOTA exhibited a significantly shorter plasma half-life (T½=14.4h) when compared to the remote-loaded counterpart (T½=21.3h), whereas surface-conjugated 64Cu-DOTA cleared only slightly faster and non-significantly, when compared to remote-loaded (17.2±2.9h versus 20.3±1.2h). From our data, we conclude the successful remote-loading of liposomes with 52Mn, and furthermore that 52Mn-DOTA may be unstable in vivo whereas 64Cu-DOTA appears suitable for quantitative imaging.


Assuntos
Quelantes/administração & dosagem , Radioisótopos de Cobre/administração & dosagem , Compostos Heterocíclicos com 1 Anel/administração & dosagem , Manganês/administração & dosagem , Radioisótopos/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem , Animais , Linhagem Celular Tumoral , Quelantes/farmacocinética , Radioisótopos de Cobre/farmacocinética , Compostos Heterocíclicos com 1 Anel/farmacocinética , Lipossomos , Manganês/farmacocinética , Camundongos Endogâmicos BALB C , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Radioisótopos/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
11.
Neuroimage ; 158: 112-125, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28669916

RESUMO

Manganese in its divalent state (Mn2+) has features that make it a unique tool for tracing neuronal pathways. It is taken up and transported by neurons in an activity-dependent manner and it can cross synapses. It also acts as a contrast agent for magnetic resonance imaging (MRI) enabling visualization of neuronal tracts. However, due to the limited sensitivity of MRI systems relatively high Mn2+ doses are required. This is undesirable, especially in long-term studies, because of the known toxicity of the metal. In order to overcome this limitation, we propose 52Mn as a positron emission tomography (PET) neuronal tract tracer. We used 52Mn for imaging dopaminergic pathways after a unilateral injection into the ventral tegmental area (VTA), as well as the striatonigral pathway after an injection into the dorsal striatum (STR) in rats. Furthermore, we tested potentially noxious effects of the radioactivity dose with a behavioral test and histological staining. 24 h after 52Mn administration, the neuronal tracts were clearly visible in PET images and statistical analysis confirmed the observed distribution of the tracer. We noticed a behavioral impairment in some animals treated with 170 kBq of 52Mn, most likely caused by dysfunction of dopaminergic cells. Moreover, there was a substantial DNA damage in the brain tissue after applying 150 kBq of the tracer. However, all those effects were completely eliminated by reducing the 52Mn dose to 20-30 kBq. Crucially, the reduced dose was still sufficient for PET imaging.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/efeitos dos fármacos , Manganês/toxicidade , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/toxicidade , Animais , Masculino , Radioisótopos/toxicidade , Ratos
12.
Front Med (Lausanne) ; 4: 98, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28748183

RESUMO

140Nd (t1/2 = 3.4 days), owing to its short-lived positron emitting daughter 140Pr (t1/2 = 3.4 min), has promise as an in vivo generator for positron emission tomography (PET). However, the electron capture decay of 140Nd is chemically disruptive to macrocycle-based radiolabeling, meaning that an in vivo redistribution of the daughter 140Pr is expected before positron emission. The purpose of this study was to determine how the delayed positron from the de-labeled 140Pr affects preclinical imaging with 140Nd. To explore the effect, 140Nd was produced at CERN-ISOLDE, reacted with the somatostatin analogue, DOTA-LM3 (1,4,7,10- tetraazacyclododecane, 1,4,7- tri acetic acid, 10- acetamide N - p-Cl-Phecyclo(d-Cys-Tyr-d-4-amino-Phe(carbamoyl)-Lys-Thr-Cys)d-Tyr-NH2) and injected into H727 xenograft bearing mice. Comparative pre- and post-mortem PET imaging at 16 h postinjection was used to quantify the in vivo redistribution of 140Pr following 140Nd decay. The somatostatin receptor-positive pancreas exhibited the highest tissue accumulation of 140Nd-DOTA-LM3 (13% ID/g at 16 h) coupled with the largest observed redistribution rate, where 56 ± 7% (n = 4, mean ± SD) of the in situ produced 140Pr washed out of the pancreas before decay. Contrastingly, the liver, spleen, and lungs acted as strong sink organs for free 140Pr3+. Based upon these results, we conclude that 140Nd imaging with a non-internalizing vector convolutes the biodistribution of the tracer with the accumulation pattern of free 140Pr. This redistribution phenomenon may show promise as a probe of the cellular interaction with the vector, such as in determining tissue dependent internalization behavior.

13.
Diabetes ; 66(8): 2163-2174, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28515126

RESUMO

The noninvasive measurement of functional ß-cell mass would be clinically valuable for monitoring the progression of type 1 and type 2 diabetes as well as the viability of transplanted insulin-producing cells. Although previous work using MRI has shown promise for functional ß-cell mass determination through voltage-dependent Ca2+ channel (VDCC)-mediated internalization of Mn2+, the clinical utility of this technique is limited by the cytotoxic levels of the Mn2+ contrast agent. Here, we show that positron emission tomography (PET) is advantageous for determining functional ß-cell mass using 52Mn2+ (t1/2: 5.6 days). We investigated the whole-body distribution of 52Mn2+ in healthy adult mice by dynamic and static PET imaging. Pancreatic VDCC uptake of 52Mn2+ was successfully manipulated pharmacologically in vitro and in vivo using glucose, nifedipine (VDCC blocker), the sulfonylureas tolbutamide and glibenclamide (KATP channel blockers), and diazoxide (KATP channel opener). In a mouse model of streptozotocin-induced type 1 diabetes, 52Mn2+ uptake in the pancreas was distinguished from healthy controls in parallel with classic histological quantification of ß-cell mass from pancreatic sections. 52Mn2+-PET also reported the expected increase in functional ß-cell mass in the ob/ob model of pretype 2 diabetes, a result corroborated by histological ß-cell mass measurements and live-cell imaging of ß-cell Ca2+ oscillations. These results indicate that 52Mn2+-PET is a sensitive new tool for the noninvasive assessment of functional ß-cell mass.


Assuntos
Diabetes Mellitus Experimental/diagnóstico por imagem , Células Secretoras de Insulina/fisiologia , Compostos de Manganês/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacologia , Animais , Canais de Cálcio/efeitos dos fármacos , Estudos de Casos e Controles , Tamanho Celular , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Progressão da Doença , Humanos , Células Secretoras de Insulina/citologia , Camundongos , Pâncreas/citologia , Pâncreas/diagnóstico por imagem , Estreptozocina
14.
Appl Radiat Isot ; 121: 38-43, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28024217

RESUMO

Pressed chromium-powder cyclotron targets were irradiated with 16MeV protons, producing 52Mn with average yields of 6.2±0.8MBq/µAh. Separation by solid-phase anion exchange from ethanol-HCl mixtures recovered 94.3±1.7% of 52Mn and reduced the chromium content by a factor of 2.2±0.4×105. An additional AG 1-X8 column was used to remove copper, iron, cobalt and zinc impurities from the prepared 52Mn in 8M HCl. The macrocyclic chelator DOTA was rapidly radiolabeled with 52Mn in aq. ammonium acetate (pH 7.5R.T.) with a radiochemical yield >99% within 1min and was stable for >2 days in bovine serum. The improved separation and purification methodology facilitates the use of 52Mn in basic science and preclinical investigations.

15.
ACS Nano ; 10(11): 9887-9898, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27754658

RESUMO

By taking advantage of the ability of 64Cu to bind nonspecifically to gold surfaces, we have developed a methodology to embed this radionuclide inside gold nanoparticles (AuNPs). 64Cu enables the in vivo imaging of AuNPs by positron emission tomography (PET). AuNPs have a multitude of uses within health technology and are useful tools for general nanoparticle research. 64Cu-AuNPs were prepared by incubating AuNP seeds with 64Cu2+, followed by the entrapment of the radionuclide by grafting on a second layer of gold. This resulted in radiolabeling efficiencies of 53 ± 6%. The radiolabel showed excellent stability when incubated with EDTA for 2 days (95% radioactivity retention) and showed no loss of 64Cu when incubated with 50% mouse serum for 2 days. The methodology was chelator-free, removing traditional concerns over chelator instability and altered AuNP properties due to surface modification. Radiolabeled 64Cu-AuNP cores were prepared in biomedically relevant sizes of 20-30 nm and used to investigate the in vivo stability of three different AuNP coatings by PET imaging in a murine xenograft tumor model. We found the longest plasma half-life (T1/2 about 9 h) and tumor accumulation (3.9%ID/g) to result from a polyethylene glycol coating, while faster elimination from the bloodstream was observed with both a Tween 20-stabilized coating and a zwitterionic coating based on a mixture of sulfonic acids and quaternary amines. In the in vivo model, the 64Cu was observed to closely follow the AuNPs for each coating, again attributed to the excellent stability of the radiolabel.

16.
Oncotarget ; 7(45): 73912-73924, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27729618

RESUMO

Mounting evidence suggests that the urokinase plasminogen activator (uPA) and its receptor (uPAR) play a central role in tumor progression. The goal of this study was to develop an 89Zr-labeled, antibody-based positron emission tomography (PET) tracer for quantitative imaging of the uPA/uPAR system. An anti-uPA monoclonal antibody (ATN-291) was conjugated with a deferoxamine (Df) derivative and subsequently labeled with 89Zr. Flow cytometry, microscopy studies, and competitive binding assays were conducted to validate the binding specificity of Df-ATN-291 against uPA. PET imaging with 89Zr-Df-ATN-291 was carried out in different tumors with distinct expression levels of uPA. Biodistribution, histology examination, and Western blotting were performed to correlate tumor uptake with uPA or uPAR expression. ATN-291 retained uPA binding affinity and specificity after Df conjugation. 89Zr-labeling of ATN-291 was achieved in good radiochemical yield and high specific activity. Serial PET imaging demonstrated that, in most tumors studied (except uPA- LNCaP), the uptake of 89Zr-Df-ATN-291 was higher compared to major organs at 120 h post-injection, providing excellent tumor contrast. The tumor-to-muscle ratio of 89Zr-Df-ATN-291 in U87MG was as high as 45.2 ± 9.0 at 120 h p.i. In vivo uPA specificity of 89Zr-Df-ATN-291 was confirmed by successful pharmacological blocking of tumor uptake with ATN-291 in U87MG tumors. Although the detailed mechanisms behind in vivo 89Zr-Df-ATN-291 tumor uptake remained to be further elucidated, quantitative PET imaging with 89Zr-Df-ATN-291 in tumors can facilitate oncologists to adopt more relevant cancer treatment planning.


Assuntos
Anticorpos Monoclonais , Imagem Molecular , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Imunofluorescência , Xenoenxertos , Humanos , Camundongos , Imagem Molecular/métodos , Neoplasias/patologia , Tomografia por Emissão de Pósitrons/métodos , Ligação Proteica , Compostos Radiofarmacêuticos , Distribuição Tecidual
17.
ACS Nano ; 10(11): 10294-10307, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27781436

RESUMO

The clinical value of current and future nanomedicines can be improved by introducing patient selection strategies based on noninvasive sensitive whole-body imaging techniques such as positron emission tomography (PET). Thus, a broad method to radiolabel and track preformed nanomedicines such as liposomal drugs with PET radionuclides will have a wide impact in nanomedicine. Here, we introduce a simple and efficient PET radiolabeling method that exploits the metal-chelating properties of certain drugs (e.g., bisphosphonates such as alendronate and anthracyclines such as doxorubicin) and widely used ionophores to achieve excellent radiolabeling yields, purities, and stabilities with 89Zr, 52Mn, and 64Cu, and without the requirement of modification of the nanomedicine components. In a model of metastatic breast cancer, we demonstrate that this technique allows quantification of the biodistribution of a radiolabeled stealth liposomal nanomedicine containing alendronate that shows high uptake in primary tumors and metastatic organs. The versatility, efficiency, simplicity, and GMP compatibility of this method may enable submicrodosing imaging studies of liposomal nanomedicines containing chelating drugs in humans and may have clinical impact by facilitating the introduction of image-guided therapeutic strategies in current and future nanomedicine clinical studies.


Assuntos
Radioisótopos de Cobre , Lipossomos , Nanomedicina , Tomografia por Emissão de Pósitrons , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Manganês , Radioisótopos , Distribuição Tecidual , Zircônio
18.
J Labelled Comp Radiopharm ; 59(9): 375-82, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27311359

RESUMO

Commercial iron supplements Monofer(®) and Cosmofer(®) were intrinsically radiolabeled with (59) Fe for the purpose of tracing iron absorption in vivo. Optimized procedures aimed at introducing (59) Fe into the macromolecular construct in a form that was as chemically equivalent to the matrix iron as possible. This was determined by challenging the labeled constructs with diethylenetriaminepentaacetic acid (DTPA) followed by separation by size-exclusion and measurements of radioactivity and iron in the eluted fractions. The final procedures were simple and involved heating aqueous dispersions of the supplements in the presence of [(59) Fe]FeCl3 for 24 h at 95 °C for Monofer, and 85 °C for Cosmofer, resulting in radiochemical yields greater than 94%. High performance size exclusion chromatography, UV-VIS spectroscopy, and dynamic light scattering were used to show that the supplements remained unchanged after radiolabeling, underscoring the applicability of the methodology for radiolabeling commercial iron preparations.


Assuntos
Suplementos Nutricionais , Radioisótopos de Ferro/química , Ferro/administração & dosagem , Ferro/química , Administração Intravenosa , Ferro/metabolismo , Marcação por Isótopo , Radioquímica
19.
Proc Natl Acad Sci U S A ; 113(8): E1026-33, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26787852

RESUMO

Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease caused by the fungus Aspergillus fumigatus, and is a leading cause of invasive fungal infection-related mortality and morbidity in patients with hematological malignancies and bone marrow transplants. We developed and tested a novel probe for noninvasive detection of A. fumigatus lung infection based on antibody-guided positron emission tomography and magnetic resonance (immunoPET/MR) imaging. Administration of a [(64)Cu]DOTA-labeled A. fumigatus-specific monoclonal antibody (mAb), JF5, to neutrophil-depleted A. fumigatus-infected mice allowed specific localization of lung infection when combined with PET. Optical imaging with a fluorochrome-labeled version of the mAb showed colocalization with invasive hyphae. The mAb-based newly developed PET tracer [(64)Cu]DOTA-JF5 distinguished IPA from bacterial lung infections and, in contrast to [(18)F]FDG-PET, discriminated IPA from a general increase in metabolic activity associated with lung inflammation. To our knowledge, this is the first time that antibody-guided in vivo imaging has been used for noninvasive diagnosis of a fungal lung disease (IPA) of humans, an approach with enormous potential for diagnosis of infectious diseases and with potential for clinical translation.


Assuntos
Anticorpos Antifúngicos/farmacologia , Anticorpos Monoclonais Murinos/farmacologia , Aspergillus fumigatus , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Aspergilose Pulmonar/diagnóstico por imagem , Animais , Humanos , Camundongos , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA