Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 11(523)2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852802

RESUMO

Accurate medical recordkeeping is a major challenge in many low-resource settings where well-maintained centralized databases do not exist, contributing to 1.5 million vaccine-preventable deaths annually. Here, we present an approach to encode medical history on a patient using the spatial distribution of biocompatible, near-infrared quantum dots (NIR QDs) in the dermis. QDs are invisible to the naked eye yet detectable when exposed to NIR light. QDs with a copper indium selenide core and aluminum-doped zinc sulfide shell were tuned to emit in the NIR spectrum by controlling stoichiometry and shelling time. The formulation showing the greatest resistance to photobleaching after simulated sunlight exposure (5-year equivalence) through pigmented human skin was encapsulated in microparticles for use in vivo. In parallel, microneedle geometry was optimized in silico and validated ex vivo using porcine and synthetic human skin. QD-containing microparticles were then embedded in dissolvable microneedles and administered to rats with or without a vaccine. Longitudinal in vivo imaging using a smartphone adapted to detect NIR light demonstrated that microneedle-delivered QD patterns remained bright and could be accurately identified using a machine learning algorithm 9 months after application. In addition, codelivery with inactivated poliovirus vaccine produced neutralizing antibody titers above the threshold considered protective. These findings suggest that intradermal QDs can be used to reliably encode information and can be delivered with a vaccine, which may be particularly valuable in the developing world and open up new avenues for decentralized data storage and biosensing.


Assuntos
Pontos Quânticos , Pele/metabolismo , Vacinação/métodos , Animais , Humanos , Ratos , Sulfetos/química , Suínos , Compostos de Zinco/química
2.
ACS Appl Mater Interfaces ; 7(45): 25281-8, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26544990

RESUMO

Flexible and conductive biocompatible materials are attractive candidates for a wide range of biomedical applications including implantable electrodes, tissue engineering, and controlled drug delivery. Here, we demonstrate that chemical and electrochemical polymerization techniques can be combined to create highly versatile silk-conducting polymer (silk-CP) composites with enhanced conductivity and electrochemical stability. Interpenetrating silk-CP composites were first generated via in situ deposition of polypyrrole during chemical polymerization of pyrrole. These composites were sufficiently conductive to serve as working electrodes for electropolymerization, which allowed an additional layer of CP to be deposited on the surface. This sequential method was applied to both 2D films and 3D sponge-like silk scaffolds, producing conductive materials with biomimetic architectures. Overall, this two-step technique expanded the range of available polymers and dopants suitable for the synthesis of mechanically robust, biocompatible, and highly conductive silk-based materials.


Assuntos
Materiais Biocompatíveis/química , Condutividade Elétrica , Técnicas Eletroquímicas/métodos , Polimerização , Ácidos/química , Animais , Bombyx , Polímeros/química , Pirróis/química , Seda , Alicerces Teciduais/química
3.
Biomacromolecules ; 16(5): 1582-9, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25894928

RESUMO

A delivery platform was developed using silk-based hydrogels, and sustained delivery of the cationic chemokine CXCL12 at therapeutically relevant doses is demonstrated. Hydrogels were prepared from plain silk and silk that had been chemically modified with sulfonic acid groups. CXCL12 was mixed with the silk solution prior to gelation, resulting in 100% encapsulation efficiency, and both hydrated and lyophilized gels were compared. By attaching a fluorescein tag to CXCL12 using a site-specific sortase-mediated enzymatic ligation, release was easily quantified in a high-throughput manner using fluorescence spectroscopy. CXCL12 continually eluted from both plain and acid-modified silk hydrogels for more than 5 weeks at concentrations ranging from 10 to 160 ng per day, depending on the gel preparation method. Notably, acid-modified silk hydrogels displayed minimal burst release yet had higher long-term release rates compared to those of plain silk hydrogels. Similar release profiles were observed over a range of loading capacities, allowing dosage to be easily varied.


Assuntos
Quimiocina CXCL12/química , Hidrogéis/química , Seda/química , Quimiocina CXCL12/síntese química , Hidrogéis/síntese química , Seda/síntese química , Ácidos Sulfônicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA