Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
medRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766048

RESUMO

Stabilized trimers preserving the native-like HIV envelope structure may be key components of a preventive HIV vaccine regimen to induce broadly neutralizing antibodies (bnAbs). We evaluated trimeric BG505 SOSIP.664 gp140, formulated with a novel TLR7/8 signaling adjuvant, 3M-052-AF/Alum, for safety, adjuvant dose-finding and immunogenicity in a first-in-healthy adult (n=17), randomized, placebo-controlled trial (HVTN 137A). The vaccine regimen appeared safe. Robust, trimer-specific antibody, B-cell and CD4+ T-cell responses emerged post-vaccination. Five vaccinees developed serum autologous tier-2 nAbs (ID50 titer, 1:28-1:8647) after 2-3 doses targeting C3/V5 and/or V1/V2/V3 Env regions by electron microscopy and mutated pseudovirus-based neutralization analyses. Trimer-specific, B-cell-derived monoclonal antibody activities confirmed these results and showed weak heterologous neutralization in the strongest responder. Our findings demonstrate the clinical utility of the 3M-052-AF/alum adjuvant and support further improvements of trimer-based Env immunogens to focus responses on multiple broad nAb epitopes. KEY TAKEAWAY/TAKE-HOME MESSAGES: HIV BG505 SOSIP.664 trimer with novel 3M-052-AF/alum adjuvant in humans appears safe and induces serum neutralizing antibodies to matched clade A, tier 2 virus, that map to diverse Env epitopes with relatively high titers. The novel adjuvant may be an important mediator of vaccine response.

2.
bioRxiv ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38559180

RESUMO

Vaccination strategies against HIV-1 aim to elicit broadly neutralizing antibodies (bnAbs) using prime-boost regimens with HIV envelope (Env) immunogens. Early antibody responses to easily accessible epitopes on these antigens are directed to non-neutralizing epitopes instead of bnAb epitopes. Autologous neutralizing antibody responses appear upon boosting once immunodominant epitopes are saturated. Here we report another type of antibody response that arises after repeated immunizations with HIV Env immunogens and present the structures of six anti-immune complexes discovered using polyclonal epitope mapping. The anti-immune complex antibodies target idiotopes composed of framework regions of antibodies bound to Env. This work sheds light on current vaccine development efforts for HIV, as well as for other pathogens, in which repeated exposure to antigen is required.

3.
bioRxiv ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37986885

RESUMO

A vaccine that can achieve protective immunity prior to sexual debut is critical to prevent the estimated 410,000 new HIV infections that occur yearly in adolescents. As children living with HIV can make broadly neutralizing antibody (bnAb) responses in plasma at a faster rate than adults, early childhood is an opportune window for implementation of a multi-dose HIV immunization strategy to elicit protective immunity prior to adolescence. Therefore, the goal of our study was to assess the ability of a B cell lineage-designed HIV envelope SOSIP to induce bnAbs in early life. Infant rhesus macaques (RMs) received either BG505 SOSIP or the germline-targeting BG505 GT1.1 SOSIP (n=5/group) with the 3M-052-SE adjuvant at 0, 6, and 12 weeks of age. All infant RMs were then boosted with the BG505 SOSIP at weeks 26, 52 and 78, mimicking a pediatric immunization schedule of multiple vaccine boosts within the first two years of life. Both immunization strategies induced durable, high magnitude binding antibodies and plasma autologous virus neutralization that primarily targeted the CD4-binding site (CD4bs) or C3/465 epitope. Notably, three BG505 GT1.1-immunized infants exhibited a plasma HIV neutralization signature reflective of VRC01-like CD4bs bnAb precursor development and heterologous virus neutralization. Finally, infant RMs developed precursor bnAb responses at a similar frequency to that of adult RMs receiving a similar immunization strategy. Thus, a multi-dose immunization regimen with bnAb lineage designed SOSIPs is a promising strategy for inducing protective HIV bnAb responses in childhood prior to adolescence when sexual HIV exposure risk begins.

4.
bioRxiv ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37425865

RESUMO

Immunodominance of antibodies targeting non-neutralizing epitopes and the high level of somatic hypermutation within germinal centers (GCs) required for most HIV broadly neutralizing antibodies (bnAbs) are major impediments to the development of an effective HIV vaccine. Rational protein vaccine design and non-conventional immunization strategies are potential avenues to overcome these hurdles. Here, we report using implantable osmotic pumps to continuously deliver a series of epitope-targeted immunogens to rhesus macaques over the course of six months to elicit immune responses against the conserved fusion peptide. Antibody specificities and GC responses were tracked longitudinally using electron microscopy polyclonal epitope mapping (EMPEM) and lymph node fine-needle aspirates, respectively. Application of cryoEMPEM delineated key residues for on-target and off-target responses that can drive the next round of structure-based vaccine design.

5.
Cell Rep Methods ; 3(6): 100509, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37426749

RESUMO

Understanding antibody-antigen interactions in a polyclonal immune response in humans and animal models is critical for rational vaccine design. Current approaches typically characterize antibodies that are functionally relevant or highly abundant. Here, we use photo-cross-linking and single-particle electron microscopy to increase antibody detection and unveil epitopes of low-affinity and low-abundance antibodies, leading to a broader structural characterization of polyclonal immune responses. We employed this approach across three different viral glycoproteins and showed increased sensitivity of detection relative to currently used methods. Results were most noticeable in early and late time points of a polyclonal immune response. Additionally, the use of photo-cross-linking revealed intermediate antibody binding states and demonstrated a distinctive way to study antibody binding mechanisms. This technique can be used to structurally characterize the landscape of a polyclonal immune response of patients in vaccination or post-infection studies at early time points, allowing for rapid iterative design of vaccine immunogens.


Assuntos
Anticorpos Neutralizantes , Vacinas , Animais , Humanos , Epitopos/química , Vacinação
6.
STAR Protoc ; 4(3): 102476, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37516970

RESUMO

Electron microscopy-based polyclonal epitope mapping (EMPEM) can delineate epitope specificities of serum antibodies to a given antigen following vaccination or infection. Here, we present a protocol for the EMPEM method for rapid high-throughput assessment of antibody responses to glycoprotein antigens in vaccination and infection studies. We describe steps for antibody isolation and digestion, antigen complex and purification, and electron microscope imaging. We then detail procedures for processing and analysis of EMPEM data. For complete details on the use and execution of this protocol, please refer to Bianchi et al. (2018).1.


Assuntos
Formação de Anticorpos , Elétrons , Mapeamento de Epitopos , Microscopia Eletrônica , Anticorpos , Glicoproteínas
8.
Nat Commun ; 13(1): 5236, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068229

RESUMO

SIVmac239 infection of macaques is a favored model of human HIV infection. However, the SIVmac239 envelope (Env) trimer structure, glycan occupancy, and the targets and ability of neutralizing antibodies (nAbs) to protect against SIVmac239 remain unknown. Here, we report the isolation of SIVmac239 nAbs that recognize a glycan hole and the V1/V4 loop. A high-resolution structure of a SIVmac239 Env trimer-nAb complex shows many similarities to HIV and SIVcpz Envs, but with distinct V4 features and an extended V1 loop. Moreover, SIVmac239 Env has a higher glycan shield density than HIV Env that may contribute to poor or delayed nAb responses in SIVmac239-infected macaques. Passive transfer of a nAb protects macaques from repeated intravenous SIVmac239 challenge at serum titers comparable to those described for protection of humans against HIV infection. Our results provide structural insights for vaccine design and shed light on antibody-mediated protection in the SIV model.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por HIV/prevenção & controle , Humanos , Macaca mulatta , Polissacarídeos
9.
Nature ; 609(7929): 998-1004, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36131022

RESUMO

Germinal centres are the engines of antibody evolution. Here, using human immunodeficiency virus (HIV) Env protein immunogen priming in rhesus monkeys followed by a long period without further immunization, we demonstrate germinal centre B (BGC) cells that last for at least 6 months. A 186-fold increase in BGC cells was present by week 10 compared with conventional immunization. Single-cell transcriptional profiling showed that both light- and dark-zone germinal centre states were sustained. Antibody somatic hypermutation of BGC cells continued to accumulate throughout the 29-week priming period, with evidence of selective pressure. Env-binding BGC cells were still 49-fold above baseline at 29 weeks, which suggests that they could remain active for even longer periods of time. High titres of HIV-neutralizing antibodies were generated after a single booster immunization. Fully glycosylated HIV trimer protein is a complex antigen, posing considerable immunodominance challenges for B cells1,2. Memory B cells generated under these long priming conditions had higher levels of antibody somatic hypermutation, and both memory B cells and antibodies were more likely to recognize non-immunodominant epitopes. Numerous BGC cell lineage phylogenies spanning more than the 6-month germinal centre period were identified, demonstrating continuous germinal centre activity and selection for at least 191 days with no further antigen exposure. A long-prime, slow-delivery (12 days) immunization approach holds promise for difficult vaccine targets and suggests that patience can have great value for tuning of germinal centres to maximize antibody responses.


Assuntos
Afinidade de Anticorpos , Linfócitos B , Movimento Celular , Células Clonais , Centro Germinativo , Anticorpos Anti-HIV , Imunização , Animais , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Afinidade de Anticorpos/genética , Afinidade de Anticorpos/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Células Clonais/citologia , Células Clonais/imunologia , Epitopos de Linfócito B/imunologia , Perfilação da Expressão Gênica , Centro Germinativo/citologia , Centro Germinativo/imunologia , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Imunização Secundária , Macaca mulatta/imunologia , Macaca mulatta/virologia , Células B de Memória/citologia , Células B de Memória/imunologia , Análise de Célula Única , Hipermutação Somática de Imunoglobulina/genética , Hipermutação Somática de Imunoglobulina/imunologia , Fatores de Tempo , Produtos do Gene env do Vírus da Imunodeficiência Humana/administração & dosagem , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
10.
Sci Adv ; 8(18): eabn2911, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35507649

RESUMO

Preexisting immunity against seasonal coronaviruses (CoVs) represents an important variable in predicting antibody responses and disease severity to severe acute respiratory syndrome CoV-2 (SARS-CoV-2) infections. We used electron microscopy-based polyclonal epitope mapping (EMPEM) to characterize the antibody specificities against ß-CoV spike proteins in prepandemic (PP) sera or SARS-CoV-2 convalescent (SC) sera. We observed that most PP sera had antibodies specific to seasonal human CoVs (HCoVs) OC43 and HKU1 spike proteins while the SC sera showed reactivity across all human ß-CoVs. Detailed molecular mapping of spike-antibody complexes revealed epitopes that were differentially targeted by preexisting antibodies and SC serum antibodies. Our studies provide an antigenic landscape to ß-HCoV spikes in the general population serving as a basis for cross-reactive epitope analyses in SARS-CoV-2-infected individuals.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Anticorpos Antivirais , Epitopos , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
11.
Sci Adv ; 8(3): eabk2039, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35044813

RESUMO

One of the rate-limiting steps in analyzing immune responses to vaccines or infections is the isolation and characterization of monoclonal antibodies. Here, we present a hybrid structural and bioinformatic approach to directly assign the heavy and light chains, identify complementarity-determining regions, and discover sequences from cryoEM density maps of serum-derived polyclonal antibodies bound to an antigen. When combined with next-generation sequencing of immune repertoires, we were able to specifically identify clonal family members, synthesize the monoclonal antibodies, and confirm that they interact with the antigen in a manner equivalent to the corresponding polyclonal antibodies. This structure-based approach for identification of monoclonal antibodies from polyclonal sera opens new avenues for analysis of immune responses and iterative vaccine design.

12.
Nat Commun ; 12(1): 4817, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376662

RESUMO

Engineered ectodomain trimer immunogens based on BG505 envelope glycoprotein are widely utilized as components of HIV vaccine development platforms. In this study, we used rhesus macaques to evaluate the immunogenicity of several stabilized BG505 SOSIP constructs both as free trimers and presented on a nanoparticle. We applied a cryoEM-based method for high-resolution mapping of polyclonal antibody responses elicited in immunized animals (cryoEMPEM). Mutational analysis coupled with neutralization assays were used to probe the neutralization potential at each epitope. We demonstrate that cryoEMPEM data can be used for rapid, high-resolution analysis of polyclonal antibody responses without the need for monoclonal antibody isolation. This approach allowed to resolve structurally distinct classes of antibodies that bind overlapping sites. In addition to comprehensive mapping of commonly targeted neutralizing and non-neutralizing epitopes in BG505 SOSIP immunogens, our analysis revealed that epitopes comprising engineered stabilizing mutations and of partially occupied glycosylation sites can be immunogenic.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/ultraestrutura , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/ultraestrutura , Microscopia Crioeletrônica/métodos , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Glicosilação , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/ultraestrutura , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , HIV-1/metabolismo , Humanos , Macaca mulatta , Modelos Moleculares , Conformação Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/ultraestrutura
13.
PLoS Pathog ; 17(4): e1008977, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33826683

RESUMO

Evaluating the structure-function relationship of viral envelope (Env) evolution and the development of broadly cross-neutralizing antibodies (bnAbs) in natural infection can inform rational immunogen design. In the present study, we examined the magnitude and specificity of autologous neutralizing antibodies induced in rabbits by a novel HIV-1 clade C Env protein (1PGE-THIVC) vis-à-vis those developed in an elite neutralizer from whom the env sequence was obtained that was used to prepare the soluble Env protein. The novel 1PGE-THIVC Env trimer displayed a native like pre-fusion closed conformation in solution as determined by small angle X-ray scattering (SAXS) and negative stain electron microscopy (EM). This closed spike conformation of 1PGE-THIVC Env trimers was correlated with weak or undetectable binding of non-neutralizing monoclonal antibodies (mAbs) compared to neutralizing mAbs. Furthermore, 1PGE-THIVC SOSIP induced potent neutralizing antibodies in rabbits to autologous virus variants. The autologous neutralizing antibody specificity induced in rabbits by 1PGE-THIVC was mapped to the C3/V4 region (T362/P401) of viral Env. This observation agreed with electron microscopy polyclonal epitope mapping (EMPEM) of the Env trimer complexed with IgG Fab prepared from the immunized rabbit sera. Our study demonstrated neutralization of sequence matched and unmatched autologous viruses by serum antibodies induced in rabbits by 1PGE-THIVC and also highlighted a comparable specificity for the 1PGE-THIVC SOSIP trimer with that seen with polyclonal antibodies elicited in the elite neutralizer by negative-stain electron microscopy polyclonal epitope (ns-EMPEM) mapping.


Assuntos
Anticorpos Neutralizantes/sangue , Antígenos Virais/sangue , Anticorpos Anti-HIV/sangue , HIV-1/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Humanos , Imunização/métodos , Coelhos , Vacinação/métodos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
14.
PLoS Pathog ; 17(2): e1009257, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33556148

RESUMO

Stabilized HIV-1 envelope (Env) trimers elicit tier 2 autologous neutralizing antibody (nAb) responses in immunized animals. We previously demonstrated that BG505 SOSIP.664.T332N gp140 (BG505 SOSIP) immunization of rhesus macaques (RM) provided robust protection against autologous intra-vaginal simian-human immunodeficiency virus (SHIV) challenge that was predicted by high serum nAb titers. Here, we show that nAb in these protected RM targeted a glycan hole proximal to residue 465 in gp120 in all cases. nAb also targeted another glycan hole at residues 241/289 and an epitope in V1 at varying frequencies. Non-neutralizing antibodies directed at N611-shielded epitopes in gp41 were also present but were more prevalent in RM with low nAb titers. Longitudinal analysis demonstrated that nAb broadened in some RM during sequential immunization but remained focused in others, the latter being associated with increases in nAb titer. Thirty-eight monoclonal antibodies (mAbs) isolated from a protected RM with an exceptionally high serum neutralization titer bound to the trimer in ELISA, and four of the mAbs potently neutralized the BG505 Env pseudovirus (PV) and SHIV. The four neutralizing mAbs were clonally related and targeted the 465 glycan hole to varying degrees, mimicking the serum. The data demonstrate that the C3/465 glycan hole cluster was the dominant neutralization target in high titer protected RM, despite other co-circulating neutralizing and non-neutralizing specificities. The isolation of a neutralizing mAb family argues that clonotype expansion occurred during BG505 SOSIP immunization, leading to high titer, protective nAb and setting a desirable benchmark for HIV vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Polissacarídeos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Epitopos/imunologia , Feminino , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Imunização , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vacinação
15.
Structure ; 29(4): 385-392.e5, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33378641

RESUMO

Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus responsible for significant morbidity and mortality in pigs. A key determinant of viral tropism and entry, the PEDV spike protein is a key target for the host antibody response and a good candidate for a protein-based vaccine immunogen. We used electron microscopy to evaluate the PEDV spike structure, as well as pig polyclonal antibody responses to viral infection. The structure of the PEDV spike reveals a configuration similar to that of HuCoV-NL63. Several PEDV protein-protein interfaces are mediated by non-protein components, including a glycan at Asn264 and two bound palmitoleic acid molecules. The polyclonal antibody response to PEDV infection shows a dominance of epitopes in the S1 region. This structural and immune characterization provides insights into coronavirus spike stability determinants and explores the immune landscape of viral spike proteins.


Assuntos
Anticorpos Antivirais/metabolismo , Infecções por Coronavirus/imunologia , Epitopos/imunologia , Vírus da Diarreia Epidêmica Suína/imunologia , Glicoproteína da Espícula de Coronavírus/química , Animais , Linhagem Celular , Microscopia Crioeletrônica , Ácidos Graxos Monoinsaturados/química , Modelos Moleculares , Conformação Molecular , Polissacarídeos/química , Vírus da Diarreia Epidêmica Suína/química , Vírus da Diarreia Epidêmica Suína/metabolismo , Ligação Proteica , Células Sf9 , Glicoproteína da Espícula de Coronavírus/imunologia , Suínos
16.
PLoS Pathog ; 16(8): e1008753, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32866207

RESUMO

The induction of broad and potent immunity by vaccines is the key focus of research efforts aimed at protecting against HIV-1 infection. Soluble native-like HIV-1 envelope glycoproteins have shown promise as vaccine candidates as they can induce potent autologous neutralizing responses in rabbits and non-human primates. In this study, monoclonal antibodies were isolated and characterized from rhesus macaques immunized with the BG505 SOSIP.664 trimer to better understand vaccine-induced antibody responses. Our studies reveal a diverse landscape of antibodies recognizing immunodominant strain-specific epitopes and non-neutralizing neo-epitopes. Additionally, we isolated a subset of mAbs against an epitope cluster at the gp120-gp41 interface that recognize the highly conserved fusion peptide and the glycan at position 88 and have characteristics akin to several human-derived broadly neutralizing antibodies.


Assuntos
Vacinas contra a AIDS/imunologia , Mapeamento de Epitopos , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Vacinas contra a AIDS/genética , Animais , Anticorpos Monoclonais Murinos/imunologia , Epitopos/genética , Anticorpos Anti-HIV/genética , Proteína gp41 do Envelope de HIV/genética , HIV-1/genética , Macaca mulatta , Multimerização Proteica/genética , Multimerização Proteica/imunologia
17.
PLoS Pathog ; 16(8): e1008665, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32780770

RESUMO

Two-component, self-assembling nanoparticles represent a versatile platform for multivalent presentation of viral antigens. Computational design of protein nanoparticles with differing sizes and geometries enables combination with antigens of choice to test novel multimerization concepts in immunization strategies where the goal is to improve the induction and maturation of neutralizing antibody lineages. Here, we describe detailed antigenic, structural, and functional characterization of computationally designed tetrahedral, octahedral, and icosahedral nanoparticle immunogens displaying trimeric HIV envelope glycoprotein (Env) ectodomains. Env trimers, based on subtype A (BG505) or consensus group M (ConM) sequences and engineered with SOSIP stabilizing mutations, were fused to an underlying trimeric building block of each nanoparticle. Initial screening yielded one icosahedral and two tetrahedral nanoparticle candidates, capable of presenting twenty or four copies of the Env trimer. A number of analyses, including detailed structural characterization by cryo-EM, demonstrated that the nanoparticle immunogens possessed the intended structural and antigenic properties. When the immunogenicity of ConM-SOSIP trimers presented on a two-component tetrahedral nanoparticle or as soluble proteins were compared in rabbits, the two immunogens elicited similar serum antibody binding titers against the trimer component. Neutralizing antibody titers were slightly elevated in the animals given the nanoparticle immunogen and were initially more focused to the trimer apex. Altogether, our findings indicate that tetrahedral nanoparticles can be successfully applied for presentation of HIV Env trimer immunogens; however, the optimal implementation to different immunization strategies remains to be determined.


Assuntos
Anticorpos Anti-HIV/imunologia , Antígenos HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Nanopartículas/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Epitopos/imunologia , Feminino , Infecções por HIV/virologia , Humanos , Imunização , Nanopartículas/administração & dosagem , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
18.
Cell Rep ; 30(11): 3755-3765.e7, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32187547

RESUMO

Rational immunogen design aims to focus antibody responses to vulnerable sites on primary antigens. Given the size of these antigens, there is, however, potential for eliciting unwanted, off-target responses. Here, we use our electron microscopy polyclonal epitope mapping approach to describe the antibody specificities elicited by immunization of non-human primates with soluble HIV envelope trimers and subsequent repeated viral challenge. An increased diversity of epitopes recognized and the approach angle by which these antibodies bind constitute a hallmark of the humoral response in most protected animals. We also show that fusion peptide-specific antibodies are likely responsible for some neutralization breadth. Moreover, cryoelectron microscopy (cryo-EM) analysis of a fully protected animal reveals a high degree of clonality within a subset of putatively neutralizing antibodies, enabling a detailed molecular description of the antibody paratope. Our results provide important insights into the immune response against a vaccine candidate that entered into clinical trials in 2019.


Assuntos
Formação de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Multimerização Proteica , Vacinação , Vacinas de Subunidades Antigênicas/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Reações Cruzadas/imunologia , Microscopia Crioeletrônica , Epitopos/química , Epitopos/imunologia , Células HEK293 , Anticorpos Anti-HIV/química , Humanos , Imunidade Humoral , Macaca mulatta , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA