Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurosci Biobehav Rev ; 156: 105484, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036162

RESUMO

Because neural processing takes time, the brain only has delayed access to sensory information. When localising moving objects this is problematic, as an object will have moved on by the time its position has been determined. Here, we consider predictive motion extrapolation as a fundamental delay-compensation strategy. From a population-coding perspective, we outline how extrapolation can be achieved by a forwards shift in the population-level activity distribution. We identify general mechanisms underlying such shifts, involving various asymmetries which facilitate the targeted 'enhancement' and/or 'dampening' of population-level activity. We classify these on the basis of their potential implementation (intra- vs inter-regional processes) and consider specific examples in different visual regions. We consider how motion extrapolation can be achieved during inter-regional signaling, and how asymmetric connectivity patterns which support extrapolation can emerge spontaneously from local synaptic learning rules. Finally, we consider how more abstract 'model-based' predictive strategies might be implemented. Overall, we present an integrative framework for understanding how the brain determines the real-time position of moving objects, despite neural delays.


Assuntos
Percepção de Movimento , Humanos , Tempo de Reação , Encéfalo , Aprendizagem , Transdução de Sinais , Estimulação Luminosa
2.
PLoS Comput Biol ; 19(9): e1011457, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37672532

RESUMO

The ability of the brain to represent the external world in real-time is impacted by the fact that neural processing takes time. Because neural delays accumulate as information progresses through the visual system, representations encoded at each hierarchical level are based upon input that is progressively outdated with respect to the external world. This 'representational lag' is particularly relevant to the task of localizing a moving object-because the object's location changes with time, neural representations of its location potentially lag behind its true location. Converging evidence suggests that the brain has evolved mechanisms that allow it to compensate for its inherent delays by extrapolating the position of moving objects along their trajectory. We have previously shown how spike-timing dependent plasticity (STDP) can achieve motion extrapolation in a two-layer, feedforward network of velocity-tuned neurons, by shifting the receptive fields of second layer neurons in the opposite direction to a moving stimulus. The current study extends this work by implementing two important changes to the network to bring it more into line with biology: we expanded the network to multiple layers to reflect the depth of the visual hierarchy, and we implemented more realistic synaptic time-courses. We investigate the accumulation of STDP-driven receptive field shifts across several layers, observing a velocity-dependent reduction in representational lag. These results highlight the role of STDP, operating purely along the feedforward pathway, as a developmental strategy for delay compensation.


Assuntos
Encéfalo , Neurônios Motores , Movimento (Física)
3.
J Vis ; 22(11): 16, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36306146

RESUMO

Sensory decision-making is frequently studied using categorical tasks, even though the feature space of most stimuli is continuous. Recently, it has become more common to measure feature perception in a gradual fashion, say when studying motion perception across the full space of directions. However, continuous reports can be contaminated by perceptual or motor biases. Here, we examined such biases on perceptual reports by comparing two response methods. With the first method, participants reported motion direction in a motor reference frame by moving a trackball. With the second method, participants used a perceptual frame of reference with a perceptual comparison stimulus. We tested biases using three different versions of random dot kinematograms. We found strong and systematic biases in responses when reporting the direction in a motor frame of reference. For the perceptual frame of reference, these systematic biases were not evident. Independent of the response method, we also detected a systematic misperception where subjects sometimes confuse the physical stimulus direction with its opposite direction. This was confirmed using a von Mises mixture model that estimated the contribution of veridical perception, misperception, and guessing. Importantly, the more sensitive perceptual reporting method revealed that, with increasing levels of sensory evidence, perceptual performance increases not only in the form of higher detection probability, but under certain conditions also in the form of increased precision.


Assuntos
Percepção de Movimento , Humanos , Percepção de Movimento/fisiologia , Psicofísica , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA