Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Faraday Discuss ; 249(0): 363-380, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-37795935

RESUMO

This study reports on the applicability of X-ray transmission (XRT), small- and wide-angle X-ray scattering (SAXS/WAXS) and small-angle neutron scattering (SANS) for investigating fundamental processes taking place in the working electrode of an electric double-layer capacitor with 1 M RbBr aqueous electrolyte at different applied potentials. XRT and incoherent neutron scattering are employed to determine global ion- and water-concentration changes and associated charge-balancing mechanisms. We showcase the suitability of SAXS and SANS, respectively, to get complementary information on local ion and solvent rearrangement in nanoconfinement, but also underscore the limitations of simple qualitative models, asking for more quantitative descriptions of water-water and ion-water interactions via detailed atomistic modelling approaches.

3.
J Appl Crystallogr ; 56(Pt 3): 801-809, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37284273

RESUMO

In situ small-angle X-ray scattering (SAXS) was employed to identify critical parameters during thermal treatment for template removal of an ordered mesoporous carbon precursor synthesized via a direct soft-templating route. The structural parameters obtained from the SAXS data as a function of time were the lattice parameter of the 2D hexagonal structure, the diameter of the cylindrical mesostructures and a power-law exponent characterizing the interface roughness. Moreover, detailed information on contrast changes and pore lattice order was obtained from analysis of the integrated SAXS intensity of the Bragg and diffuse scattering separately. Five characteristic regions during heat treatment were identified and discussed regarding the underlying dominant processes. The influence of temperature and O2/N2 ratio on the final structure was analyzed, and parameter ranges were identified for an optimized template removal without strongly affecting the matrix. The results indicate that the final structure and controllability of the process are optimum for temperatures between 260 and 300°C with a gas flow containing 2 mol% of O2.

4.
Gels ; 9(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36661837

RESUMO

In this study, we present a detailed comparison between a conventional supercritical drying process and an evaporative drying technique for hierarchically organized porous silica gel monoliths. These gels are based on a model system synthesized by the aqueous sol-gel processing of an ethylene-glycol-modified silane, resulting in a cellular, macroporous, strut-based network comprising anisotropic, periodically arranged mesopores formed by microporous amorphous silica. The effect of the two drying procedures on the pore properties (specific surface area, pore volume, and pore widths) and on the shrinkage of the monolith is evaluated through a comprehensive characterization by using nitrogen physisorption, electron microscopy, and small-angle X-ray scattering. It can clearly be demonstrated that for the hierarchically organized porous solids, the evaporative drying procedure can compete without the need for surface modification with the commonly applied supercritical drying in terms of the material and textural properties, such as specific surface area and pore volume. The thus obtained materials deliver a high specific surface area and exhibit overall comparable or even improved pore characteristics to monoliths prepared by supercritical drying. Additionally, the pore properties can be tailored to some extent by adjusting the drying conditions, such as temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA