Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1415794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957469

RESUMO

Endocytosis represents a category of regulated active transport mechanisms. These encompass clathrin-dependent and -independent mechanisms, as well as fluid phase micropinocytosis and macropinocytosis, each demonstrating varying degrees of specificity and capacity. Collectively, these mechanisms facilitate the internalization of cargo into cellular vesicles. Pregnancy is one such physiological state during which endocytosis may play critical roles. A successful pregnancy necessitates ongoing communication between maternal and fetal cells at the maternal-fetal interface to ensure immunologic tolerance for the semi-allogenic fetus whilst providing adequate protection against infection from pathogens, such as viruses and bacteria. It also requires transport of nutrients across the maternal-fetal interface, but restriction of potentially harmful chemicals and drugs to allow fetal development. In this context, trogocytosis, a specific form of endocytosis, plays a crucial role in immunological tolerance and infection prevention. Endocytosis is also thought to play a significant role in nutrient and toxin handling at the maternal-fetal interface, though its mechanisms remain less understood. A comprehensive understanding of endocytosis and its mechanisms not only enhances our knowledge of maternal-fetal interactions but is also essential for identifying the pathogenesis of pregnancy pathologies and providing new avenues for therapeutic intervention.


Assuntos
Endocitose , Troca Materno-Fetal , Humanos , Gravidez , Endocitose/imunologia , Feminino , Troca Materno-Fetal/imunologia , Animais , Transporte Biológico , Nutrientes/metabolismo , Tolerância Imunológica , Placenta/imunologia , Placenta/metabolismo
2.
Placenta ; 154: 49-59, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38878622

RESUMO

INTRODUCTION: Gestational diabetes mellitus (GDM) is a major pregnancy metabolic disorder and is strongly linked with obesity. Kisspeptin is a hormone that increases several thousand-fold in the maternal circulation during human pregnancy, with placenta as its main source. Studies have suggested that kisspeptin regulates trophoblast invasion and promotes pancreatic insulin secretion and peripheral insulin sensitivity. METHODS: In a well-characterized cohort of pregnant South African women and molecular and histological techniques, this study explored the impact and interaction of maternal obesity and GDM on kisspeptin (KISS1) signalling in relation to placental morphology and maternal and neonatal parameters. RESULTS: We found that GDM had no effect on placental KISS1 and KISS1R (KISS1 receptor) mRNA and/or protein expression. However, obesity reduced placental KISS1R mRNA expression even though overall KISS1 protein abundance or localization was not different from the non-obese group. Maternal and cord circulating KISS1 concentrations did not vary with obesity or GDM, but maternal circulating KISS1 was positively correlated with placenta weight in non-GDM obese women, and negatively correlated with placental intervillous space volume in non-GDM non-obese women. Cord serum KISS1 was positively correlated with infant weight in GDM obese women, but negatively correlated with maternal BMI in the non-obese GDM group. Placental syncytiotrophoblast extracellular vesicles exhibited detectable KISS1 and its abundance was ∼50 % lower in those from obese GDM compared to non-GDM women. DISCUSSION: This study shows maternal obesity and GDM can modulate placental kisspeptin signalling and placental morphological development with potential pathophysiological implications for clinically-relevant pregnancy and perinatal outcomes.

3.
Am J Physiol Renal Physiol ; 327(1): F21-F36, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695077

RESUMO

According to the Developmental Origins of Health and Disease hypothesis, exposure to certain environmental influences during early life may be a key determinant of fetal development and short- and long-term offspring health. Indeed, adverse conditions encountered during the fetal, perinatal, and early childhood stages can alter normal development and growth, as well as put the offspring at elevated risk of developing long-term health conditions in adulthood, including chronic kidney disease and cardiovascular diseases. Of relevance in understanding the mechanistic basis of these long-term health conditions are previous findings showing low glomerular number in human intrauterine growth restriction and low birth weight-indicators of a suboptimal intrauterine environment. In different animal models, the main suboptimal intrauterine conditions studied relate to maternal dietary manipulations, poor micronutrient intake, prenatal ethanol exposure, maternal diabetes, glucocorticoid and chemical exposure, hypoxia, and placental insufficiency. These studies have demonstrated changes in kidney structure, glomerular endowment, and expression of key genes and signaling pathways controlling endocrine, excretion, and filtration function of the offspring. This review aims to summarize those studies to uncover the effects and mechanisms by which adverse gestational environments impact offspring renal and vascular health in adulthood. This is important for identifying agents and interventions that can prevent and mitigate the long-term consequences of an adverse intrauterine environment on the subsequent generation.NEW & NOTEWORTHY Human data and experimental animal data show that suboptimal environments during fetal development increase the risk of renal and vascular diseases in adult-life. This is related to permanent changes in kidney structure, function, and expression of genes and signaling pathways controlling filtration, excretion, and endocrine function. Uncovering the mechanisms by which offspring renal development and function is impacted is important for identifying ways to mitigate the development of diseases that strain health care services worldwide.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Feminino , Animais , Desenvolvimento Fetal , Rim/metabolismo , Rim/patologia , Nefropatias/etiologia , Doenças Vasculares/metabolismo , Doenças Vasculares/etiologia , Fatores de Risco
4.
Antioxidants (Basel) ; 13(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38671859

RESUMO

BACKGROUND: Obesity during pregnancy is related to adverse maternal and neonatal outcomes. Factors involved in these outcomes may include increased maternal insulin resistance, inflammation, oxidative stress, and nutrient mishandling. The placenta is the primary determinant of fetal outcomes, and its function can be impacted by maternal obesity. The aim of this study on mice was to determine the effect of obesity on maternal lipid handling, inflammatory and redox state, and placental oxidative stress, inflammatory signaling, and gene expression relative to female and male fetal growth. METHODS: Female mice were fed control or obesogenic high-fat/high-sugar diet (HFHS) from 9 weeks prior to, and during, pregnancy. On day 18.5 of pregnancy, maternal plasma, and liver, placenta, and fetal serum were collected to examine the immune and redox states. The placental labyrinth zone (Lz) was dissected for RNA-sequencing analysis of gene expression changes. RESULTS: the HFHS diet induced, in the dams, hepatic steatosis, oxidative stress (reduced catalase, elevated protein oxidation) and the activation of pro-inflammatory pathways (p38-MAPK), along with imbalanced circulating cytokine concentrations (increased IL-6 and decreased IL-5 and IL-17A). HFHS fetuses were asymmetrically growth-restricted, showing sex-specific changes in circulating cytokines (GM-CSF, TNF-α, IL-6 and IFN-γ). The morphology of the placenta Lz was modified by an HFHS diet, in association with sex-specific alterations in the expression of genes and proteins implicated in oxidative stress, inflammation, and stress signaling. Placental gene expression changes were comparable to that seen in models of intrauterine inflammation and were related to a transcriptional network involving transcription factors, LYL1 and PLAG1. CONCLUSION: This study shows that fetal growth restriction with maternal obesity is related to elevated oxidative stress, inflammatory pathways, and sex-specific placental changes. Our data are important, given the marked consequences and the rising rates of obesity worldwide.

5.
Methods Mol Biol ; 2781: 1-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502438

RESUMO

The mouse is a common animal species used for translational studies. In reproductive studies, this animal is typically preferred over other models as the rodent placenta shows similarities to the human but has a relatively short gestational period. In mice, the transport of oxygen and nutrients between mother and fetus occurs in a restricted area of the placenta called the labyrinth zone. Here, we provide a detailed protocol to study labyrinth zone trophoblast proliferation and syncytial trophoblast identification using paraffin-embedded histological sections of the mouse placenta and immunohistochemistry. By describing step by step how to collect the mouse placenta and process and analyze the labyrinth zone, we hope to help other scientists understand the contribution of changes in placental transport function in their experimental model and therefore advance our understanding of mechanisms underlying pregnancy complications.


Assuntos
Placenta , Trofoblastos , Camundongos , Gravidez , Feminino , Humanos , Animais , Roedores
6.
Cell Mol Life Sci ; 81(1): 151, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526599

RESUMO

Obesity and gestational diabetes (GDM) impact fetal growth during pregnancy. Iron is an essential micronutrient needed for energy-intense feto-placental development, but if mis-handled can lead to oxidative stress and ferroptosis (iron-dependent cell death). In a mouse model showing maternal obesity and glucose intolerance, we investigated the association of materno-fetal iron handling and placental ferroptosis, oxidative damage and stress signalling activation with fetal growth. Female mice were fed a standard chow or high fat, high sugar (HFHS) diet during pregnancy and outcomes were measured at day (d)16 or d19 of pregnancy. In HFHS-fed mice, maternal hepcidin was reduced and iron status maintained (tissue iron levels) at both d16 and d19. However, fetal weight, placental iron transfer capacity, iron deposition, TFR1 expression and ERK2-mediated signalling were reduced and oxidative damage-related lipofuscin accumulation in the placenta was increased in HFHS-fed mice. At d19, whilst TFR1 remained decreased, fetal weight was normal and placental weight, iron content and iron transporter genes (Dmt1, Zip14, and Fpn1) were reduced in HFHS-fed mice. Furthermore, there was stress kinase activation (increased phosphorylated p38MAPK, total ERK and JNK) in the placenta from HFHS-fed mice at d19. In summary, a maternal HFHS diet during pregnancy impacts fetal growth trajectory in association with changes in placental iron handling, ferroptosis and stress signalling. Downregulation of placental iron transporters in HFHS mice may protect the fetus from excessive oxidative iron. These findings suggest a role for alterations in placental iron homeostasis in determining perinatal outcomes of pregnancies associated with GDM and/or maternal obesity.


Assuntos
Ferroptose , Obesidade Materna , Humanos , Gravidez , Feminino , Animais , Camundongos , Ferro , Peso Fetal , Placenta , Feto , Dieta Hiperlipídica/efeitos adversos
7.
Artigo em Inglês | MEDLINE | ID: mdl-38418281

RESUMO

The obesity epidemic has led to a growing body of research investigating the consequences of maternal obesity on pregnancy and offspring health. The placenta, traditionally viewed as a passive intermediary between mother and fetus, is known to play a critical role in modulating the intrauterine environment and fetal development, and we now know that maternal obesity leads to increased inflammation, oxidative stress, and altered placental function. Here, we review recent research exploring the involvement of inflammation and oxidative stress as mechanisms impacting the placenta and fetus during obese pregnancy. Understanding them is crucial for informing strategies that can mitigate the adverse health effects of maternal obesity on offspring development and disease risk.

8.
BJOG ; 131(5): 623-631, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37501633

RESUMO

Exposure to extreme heat in pregnancy increases the risk of stillbirth. Progress in reducing stillbirth rates has stalled, and populations are increasingly exposed to high temperatures and climate events that may further undermine health strategies. This narrative review summarises the current clinical and epidemiological evidence of the impact of maternal heat exposure on stillbirth risk. Out of 20 studies, 19 found an association between heat and stillbirth risk. Recent studies based in low- to middle-income countries and tropical settings add to the existing literature to demonstrate that all populations are at risk. Additionally, both short-term heat exposure and whole-pregnancy heat exposure increase the risk of stillbirth. A definitive threshold of effect has not been identified, as most studies define exposure as above the 90th centile of the usual temperature for that population. Therefore, the association between heat and stillbirth has been found with exposures from as low as >12.64°C up to >46.4°C. The pathophysiological pathways by which maternal heat exposure may lead to stillbirth, based on human and animal studies, include both placental and embryonic or fetal impacts. Although evidence gaps remain and further research is needed to characterise these mechanistic pathways in more detail, preliminary evidence suggests epigenetic changes, alteration in imprinted genes, congenital abnormalities, reduction in placental blood flow, size and function all play a part. Finally, we explore this topic from a public health perspective; we discuss and evaluate the current public health guidance on minimising the risk of extreme heat in the community. There is limited pregnancy-specific guidance within heatwave planning, and no evidence-based interventions have been established to prevent poor pregnancy outcomes. We highlight priority research questions to move forward in the field and specifically note the urgent need for evidence-based interventions that are sustainable.


Assuntos
Temperatura Alta , Natimorto , Gravidez , Feminino , Humanos , Natimorto/epidemiologia , Mudança Climática , Placenta , Resultado da Gravidez
9.
Am J Pathol ; 193(12): 1916-1935, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37689383

RESUMO

Pregnancy-related problems have been linked to impairments in maternal uterine spiral artery (SpA) remodeling. The mechanisms underlying this association are still unclear. It is also unclear whether hyperandrogenism and insulin resistance, the two common manifestations of polycystic ovary syndrome, affect uterine SpA remodeling. We verified previous work in which exposure to 5-dihydrotestosterone (DHT) and insulin (INS) in rats during pregnancy resulted in hyperandrogenism, insulin intolerance, and higher fetal mortality. Exposure to DHT and INS dysregulated the expression of angiogenesis-related genes in the uterus and placenta and also decreased expression of endothelial nitric oxide synthase and matrix metallopeptidases 2 and 9, increased fibrotic collagen deposits in the uterus, and reduced expression of marker genes for SpA-associated trophoblast giant cells. These changes were related to a greater proportion of unremodeled uterine SpAs and a smaller proportion of highly remodeled arteries in DHT + INS-exposed rats. Placentas from DHT + INS-exposed rats exhibited decreased basal and labyrinth zone regions, reduced maternal blood spaces, diminished labyrinth vascularity, and an imbalance in the abundance of vascular and smooth muscle proteins. Furthermore, placentas from DHT + INS-exposed rats showed expression of placental insufficiency markers and a significant increase in cell senescence-associated protein levels. Altogether, this work demonstrates that increased pregnancy complications in polycystic ovary syndrome may be mediated by problems with uterine SpA remodeling, placental functionality, and placental senescence.


Assuntos
Hiperandrogenismo , Síndrome do Ovário Policístico , Humanos , Ratos , Gravidez , Feminino , Animais , Placenta/metabolismo , Síndrome do Ovário Policístico/metabolismo , Hiperandrogenismo/metabolismo , Útero/metabolismo , Artérias , Di-Hidrotestosterona/metabolismo , Insulina , Artéria Uterina/metabolismo
10.
Pathog Dis ; 812023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37727973

RESUMO

Because the placenta is bathed in maternal blood, it is exposed to infectious agents and chemicals that may be present in the mother's circulation. Such exposures, which do not necessarily equate with transmission to the fetus, may primarily cause placental injury, thereby impairing placental function. Recent research has improved our understanding of the mechanisms by which some infectious agents are transmitted to the fetus, as well as the mechanisms underlying their impact on fetal outcomes. However, less is known about the impact of placental infection on placental structure and function, or the mechanisms underlying infection-driven placental pathogenesis. Moreover, recent studies indicate that noninfectious environmental agents accumulate in the placenta, but their impacts on placental function and fetal outcomes are unknown. Critically, diagnosing placental insults during pregnancy is very difficult and currently, this is possible only through postpartum placental examination. Here, with emphasis on humans, we discuss what is known about the impact of infectious and chemical agents on placental physiology and function, particularly in the absence of maternal-fetal transmission, and highlight knowledge gaps with potential implications for diagnosis and intervention against placental pathologies.


Assuntos
Feto , Placenta , Gravidez , Feminino , Humanos
11.
Cell Metab ; 35(7): 1195-1208.e6, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37437545

RESUMO

Maternal-offspring interactions in mammals involve both cooperation and conflict. The fetus has evolved ways to manipulate maternal physiology to enhance placental nutrient transfer, but the mechanisms involved remain unclear. The imprinted Igf2 gene is highly expressed in murine placental endocrine cells. Here, we show that Igf2 deletion in these cells impairs placental endocrine signaling to the mother, without affecting placental morphology. Igf2 controls placental hormone production, including prolactins, and is crucial to establish pregnancy-related insulin resistance and to partition nutrients to the fetus. Consequently, fetuses lacking placental endocrine Igf2 are growth restricted and hypoglycemic. Mechanistically, Igf2 controls protein synthesis and cellular energy homeostasis, actions dependent on the placental endocrine cell type. Igf2 loss also has additional long-lasting effects on offspring metabolism in adulthood. Our study provides compelling evidence for an intrinsic fetal manipulation system operating in placenta that modifies maternal metabolism and fetal resource allocation, with long-term consequences for offspring metabolic health.


Assuntos
Resistência à Insulina , Fator de Crescimento Insulin-Like II , Placenta , Animais , Feminino , Camundongos , Gravidez , Comunicação Celular , Homeostase , Hipoglicemiantes , Fator de Crescimento Insulin-Like II/genética , Impressão Genômica
12.
Cells ; 12(7)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37048166

RESUMO

Fetal growth restriction (FGR) is a leading cause of perinatal morbidity and mortality. Altered placental formation and functional capacity are major contributors to FGR pathogenesis. Relating placental structure to function across the placenta in healthy and FGR pregnancies remains largely unexplored but could improve understanding of placental diseases. We investigated integration of these parameters spatially in the term human placenta using predictive modelling. Systematic sampling was able to overcome heterogeneity in placental morphological and molecular features. Defects in villous development, elevated fibrosis, and reduced expression of growth and functional marker genes (IGF2, VEGA, SLC38A1, and SLC2A3) were seen in age-matched term FGR versus healthy control placentas. Characteristic histopathological changes with specific accompanying molecular signatures could be integrated through computational modelling to predict if the placenta came from a healthy or FGR pregnancy. Our findings yield new insights into the spatial relationship between placental structure and function and the etiology of FGR.


Assuntos
Desenvolvimento Fetal , Placenta , Gravidez , Feminino , Humanos , Placenta/metabolismo , Desenvolvimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Expressão Gênica
13.
Cells ; 12(5)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36899933

RESUMO

Adverse maternal environments such as small size, malnutrition, and metabolic conditions are known to influence fetal growth outcomes. Similarly, fetal growth and metabolic alterations may alter the intrauterine environment and affect all fetuses in multiple gestation/litter-bearing species. The placenta is the site of convergence between signals derived from the mother and the developing fetus/es. Its functions are fuelled by energy generated by mitochondrial oxidative phosphorylation (OXPHOS). The aim of this study was to delineate the role of an altered maternal and/or fetal/intrauterine environment in feto-placental growth and placental mitochondrial energetic capacity. To address this, in mice, we used disruptions of the gene encoding phosphoinositol 3-kinase (PI3K) p110α, a growth and metabolic regulator to perturb the maternal and/or fetal/intrauterine environment and study the impact on wildtype conceptuses. We found that feto-placental growth was modified by a perturbed maternal and intrauterine environment, and effects were most evident for wildtype males compared to females. However, placental mitochondrial complex I+II OXPHOS and total electron transport system (ETS) capacity were similarly reduced for both fetal sexes, yet reserve capacity was additionally decreased in males in response to the maternal and intrauterine perturbations. These were also sex-dependent differences in the placental abundance of mitochondrial-related proteins (e.g., citrate synthase and ETS complexes), and activity of growth/metabolic signalling pathways (AKT and MAPK) with maternal and intrauterine alterations. Our findings thus identify that the mother and the intrauterine environment provided by littermates modulate feto-placental growth, placental bioenergetics, and metabolic signalling in a manner dependent on fetal sex. This may have relevance for understanding the pathways leading to reduced fetal growth, particularly in the context of suboptimal maternal environments and multiple gestation/litter-bearing species.


Assuntos
Desenvolvimento Fetal , Placenta , Masculino , Gravidez , Feminino , Camundongos , Animais , Humanos , Placenta/metabolismo , Mães , Transdução de Sinais , Tamanho do Órgão
14.
Front Endocrinol (Lausanne) ; 14: 1116770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843585

RESUMO

Conditions such as small for gestational age (SGA), which is defined as birthweight less than 10th percentile for gestational age can predispose to neurodevelopmental abnormalities compared to babies with normal birthweight. Fetal growth and birthweight depend on placental function, as this organ transports substrates to the developing fetus and it acts as a source of endocrine factors, including steroids and prolactins that are required for fetal development and pregnancy maintenance. To advance our knowledge on the aetiology of fetal growth disorders, the vast majority of the research has been focused on studying the transport function of the placenta, leaving practically unexplored the contribution of placental hormones in the regulation of fetal growth. Here, using mice and natural variability in fetal growth within the litter, we compared fetuses that fell on or below the 10th percentile (classified as SGA) with those that had adequate weight for their gestational age (AGA). In particular, we compared placental endocrine metabolism and hormone production, as well as fetal brain weight and expression of developmental, growth and metabolic genes between SGA and AGA fetuses. We found that compared to AGA fetuses, SGA fetuses had lower placental efficiency and reduced capacity for placental production of hormones (e.g. steroidogenic gene Cyp17a1, prolactin Prl3a1, and pregnancy-specific glycoproteins Psg21). Brain weight was reduced in SGA fetuses, although this was proportional to the reduction in overall fetal size. The expression of glucose transporter 3 (Slc2a3) was reduced despite the abundance of AKT, FOXO and ERK proteins were similar. Developmental (Sv2b and Gabrg1) and microglia genes (Ier3), as well as the pregnancy-specific glycoprotein receptor (Cd9) were lower in the brain of SGA versus AGA fetuses. In this mouse model of SGA, our results therefore demonstrate that placental endocrine dysfunction is associated with changes in fetal growth and fetal brain development.


Assuntos
Doenças Placentárias , Placenta , Humanos , Gravidez , Feminino , Animais , Camundongos , Peso ao Nascer , Placenta/metabolismo , Idade Gestacional , Retardo do Crescimento Fetal/metabolismo , Desenvolvimento Fetal , Feto/metabolismo , Peso Fetal , Encéfalo/metabolismo
15.
Vet Sci ; 10(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36851448

RESUMO

BACKGROUND: Biometrical and blood flow examinations are fundamental for assessing fetoplacental development during pregnancy. Guinea pigs have been proposed as a good model to study fetal development and related gestational complications; however, longitudinal growth and blood flow changes in utero have not been properly described. This study aimed to describe fetal and placental growth and blood flow of the main intrauterine vascular beds across normal guinea pig pregnancy and to discuss the relevance of this data for human pregnancy. METHODS: Pregnant guinea pigs were studied from day 25 of pregnancy until term (day ~70) by ultrasound and Doppler assessment. The results were compared to human data from the literature. RESULTS: Measurements of biparietal diameter (BPD), cranial circumference (CC), abdominal circumference, and placental biometry, as well as pulsatility index determination of umbilical artery, middle cerebral artery (MCA), and cerebroplacental ratio (CPR), were feasible to determine across pregnancy, and they could be adjusted to linear or nonlinear functions. In addition, several of these parameters showed a high correlation coefficient and could be used to assess gestational age in guinea pigs. We further compared these data to ultrasound variables from human pregnancy with high similarities. CONCLUSIONS: BPD and CC are the most reliable measurements to assess fetal growth in guinea pigs. Furthermore, this is the first report in which the MCA pulsatility index and CPR are described across guinea pig gestation. The guinea pig is a valuable model to assess fetal growth and blood flow distribution, variables that are comparable with human pregnancy.

16.
J Physiol ; 601(7): 1287-1306, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36849131

RESUMO

Maternal obesity and gestational diabetes mellitus (GDM) are associated with insulin resistance and health risks for mother and offspring. Obesity is also characterized by low-grade inflammation, which in turn, impacts insulin sensitivity. The placenta secretes inflammatory cytokines and hormones that influence maternal glucose and insulin handling. However, little is known about the effect of maternal obesity, GDM and their interaction, on placental morphology, hormones and inflammatory cytokines. In a South African cohort of non-obese and obese pregnant women with and without GDM, this study examined placental morphology using stereology, placental hormone and cytokine expression using real-time PCR, western blotting and immunohistochemistry, and circulating TNFα and IL-6 concentrations using ELISA. Placental expression of endocrine and growth factor genes was not altered by obesity or GDM. However, LEPTIN gene expression was diminished, syncytiotrophoblast TNFα immunostaining elevated and stromal and fetal vessel IL-6 staining reduced in the placenta of obese women in a manner that was partly influenced by GDM status. Placental TNFα protein abundance and maternal circulating TNFα concentrations were reduced in GDM. Both maternal obesity and, to a lesser extent, GDM were accompanied by specific changes in placental morphometry. Maternal blood pressure and weight gain and infant ponderal index were also modified by obesity and/or GDM. Thus, obesity and GDM have specific impacts on placental morphology and endocrine and inflammatory states that may relate to pregnancy outcomes. These findings may contribute to developing placenta-targeted treatments that improve mother and offspring outcomes, which is particularly relevant given increasing rates of obesity and GDM worldwide. KEY POINTS: Rates of maternal obesity and gestational diabetes (GDM) are increasing worldwide, including in low-middle income countries (LMIC). Despite this, much of the work in the field is conducted in higher-income countries. In a well-characterised cohort of South African women, this study shows that obesity and GDM have specific impacts on placental structure, hormone production and inflammatory profile. Moreover, such placental changes were associated with pregnancy and neonatal outcomes in women who were obese and/or with GDM. The identification of specific changes in the placenta may help in the design of diagnostic and therapeutic approaches to improve pregnancy and neonatal outcomes with particular significant benefit in LMICs.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Obesidade Materna , Recém-Nascido , Feminino , Humanos , Gravidez , Placenta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Obesidade Materna/metabolismo , África do Sul , Obesidade/metabolismo , Inflamação , Citocinas/metabolismo
17.
Exp Physiol ; 108(3): 371-397, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36484327

RESUMO

NEW FINDINGS: What is the topic of this review? How the placenta, which transports nutrients and oxygen to the fetus, may alter its support of fetal growth developmentally and with adverse gestational conditions. What advances does it highlight? Placental formation and function alter with the needs of the fetus for substrates for growth during normal gestation and when there is enhanced competition for substrates in species with multiple gestations or adverse gestational environments, and this is mediated by imprinted genes, signalling pathways, mitochondria and fetal sexomes. ABSTRACT: The placenta is vital for mammalian development and a key determinant of life-long health. It is the interface between the mother and fetus and is responsible for transporting the nutrients and oxygen a fetus needs to develop and grow. Alterations in placental formation and function, therefore, have consequences for fetal growth and birthweight, which in turn determine perinatal survival and risk of non-communicable diseases for the offspring in later postnatal life. However, the placenta is not a static organ. As this review summarizes, research from multiple species has demonstrated that placental formation and function alter developmentally to the needs of the fetus for substrates for growth during normal gestation, as well as when there is greater competition for substrates in polytocous species and monotocous species with multiple gestations. The placenta also adapts in response to the gestational environment, integrating information about the ability of the mother to provide nutrients and oxygen with the needs of the fetus in that prevailing environment. In particular, placental structure (e.g. vascularity, surface area, blood flow, diffusion distance) and transport capacity (e.g. nutrient transporter levels and activity) respond to suboptimal gestational environments, namely malnutrition, obesity, hypoxia and maternal ageing. Mechanisms mediating developmentally and environmentally induced homeostatic responses of the placenta that help support normal fetal growth include imprinted genes, signalling pathways, subcellular constituents and fetal sexomes. Identification of these placental strategies may inform the development of therapies for complicated human pregnancies and advance understanding of the pathways underlying poor fetal outcomes and their consequences for health and disease risk.


Assuntos
Desenvolvimento Fetal , Placenta , Animais , Gravidez , Feminino , Humanos , Placenta/fisiologia , Feto , Proteínas de Membrana Transportadoras/metabolismo , Oxigênio/metabolismo , Mamíferos/metabolismo
18.
Vet Sci ; 9(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36136716

RESUMO

Fetal growth is reliant on placental formation and function, which, in turn, requires the energy produced by the mitochondria. Prior work has shown that both mother and fetus operate via the phosphoinositol 3-kinase (PI3K)-p110α signalling pathway to modify placental development, function, and fetal growth outcomes. This study in mice used genetic inactivation of PI3K-p110α (α/+) in mothers and fetuses and high resolution respirometry to investigate the influence of maternal and fetal PI3K-p110α deficiency on fetal and placental growth, in relation to placental mitochondrial bioenergetics, for each fetal sex. The effect of PI3K-p110α deficiency on maternal body composition was also determined to understand more about the maternal-driven changes in feto-placental development. These data show that male fetuses were more sensitive than females to fetal PI3K-p110α deficiency, as they had greater reductions in fetal and placental weight, when compared to their WT littermates. Placental weight was also altered in males only of α/+ dams. In addition, α/+ male, but not female, fetuses showed an increase in mitochondrial reserve capacity, when compared to their WT littermates in α/+ dams. Finally, α/+ dams exhibited reduced adipose depot masses, compared to wild-type dams. These findings, thus, demonstrate that maternal nutrient reserves and ability to apportion nutrients to the fetus are reduced in α/+ dams. Moreover, maternal and fetal PI3K-p110α deficiency impacts conceptus growth and placental mitochondrial bioenergetic function, in a manner dependent on fetal sex.

19.
Acta Physiol (Oxf) ; 236(2): e13861, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35880402

RESUMO

AIMS: Diets containing high-fat and high sugar (HFHS) lead to overweight/obesity. Overweight/obesity increases the risk of infertility, and of the pregnant mother and her child for developing metabolic conditions. Overweight/obesity has been recreated in mice, but most studies focus on the effects of chronic, long-term HFHS diet exposure. Here, we exposed mice to HFHS from 3 weeks prior to pregnancy with the aim of determining impacts on fertility, and gestational and neonatal outcomes. METHODS: Time-domain NMR scanning was used to assess adiposity, glucose, and insulin tolerance tests were employed to examine metabolic physiology, and morphological and proteomic analyses conducted to assess structure and nutrient levels of maternal organs and placenta. RESULTS: Fertility measures of HFHS dams were largely the same as controls. HFHS dams had increased adiposity pre-pregnancy, however, exhibited exacerbated lipolysis/hyper-mobilization of adipose stores in late pregnancy. While there were no differences in glucose or insulin tolerance, HFHS dams were hyperglycemic and hyperinsulinemic in pregnancy. HFHS dams had fatty livers and altered pancreatic islet morphology. Although fetuses were hyperglycemic and hyperinsulinemic, there was no change in fetal growth in HFHS dams. There were also reductions in placenta formation. Moreover, there was increased offspring loss during lactation, which was related to aberrant mammary gland development and milk protein composition in HFHS dams. CONCLUSIONS: These findings are relevant given current dietary habits and the development of maternal and offspring alterations in the absence of an increase in maternal weight and adiposity during pregnancy, which are the current clinical markers to determine risk across gestation.


Assuntos
Insulinas , Efeitos Tardios da Exposição Pré-Natal , Animais , Dieta , Dieta Hiperlipídica/efeitos adversos , Feminino , Glucose , Humanos , Lactação , Camundongos , Proteínas do Leite , Obesidade/metabolismo , Sobrepeso , Gravidez , Proteômica
20.
Front Cell Dev Biol ; 10: 928210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846351

RESUMO

Pregnancy requires adaptations in maternal metabolism to support fetal growth. The phosphoinositol-3-kinase (PI3K) signalling pathway controls multiple biological processes and defects in this pathway are linked to metabolic disorders including insulin resistance and glucose intolerance in non-pregnant animals. However, relatively little is known about the contribution of PI3K signalling to the maternal metabolic adaptations during pregnancy. Using mice with partial inactivation of the PI3K isoform, p110α (due to a heterozygous dominant negative mutation; Pik3ca-D933A), the effects of impaired PI3K-p110α signalling on glucose and insulin handling were examined in the pregnant and non-pregnant states and related to the morphological, molecular, and mitochondrial changes in key metabolic organs. The results show that non-pregnant mice lacking PI3K-p110α are glucose intolerant but exhibit compensatory increases in pancreatic glucose-stimulated insulin release and adipose tissue mitochondrial respiratory capacity and fatty acid oxidation. However, in pregnancy, mutant mice failed to show the normal increment in glucose intolerance and pancreatic ß-cell mass observed in wild-type pregnant dams and exhibited further enhanced adipose tissue mitochondrial respiratory capacity. These maladaptations in pregnant mutant mice were associated with fetal growth restriction. Hence, PI3K-p110α is a key regulator of metabolic adaptations that support fetal growth during normal pregnancy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA