Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38668842

RESUMO

The ammonia fiber expansion (AFEX) pretreatment of lignocellulosic biomass offers a significant advantage in terms of obtaining high glucan conversion, with the added benefit of ammonia being fully recyclable. However, despite the high efficiency of AFEX in pretreating lignocellulose, relatively high enzyme loading is still required for effective cellulose conversions. In this study, we have updated the AFEX pretreatment method; ammonia and sodium sulfite (ASS) can be used to produce a more digestible substrate. The results demonstrate that ASS-pretreated corn stover (CS) yields a higher fermentable sugar yield compared with AFEX pretreatment, even at lower enzyme loadings. Specifically, at an enzyme loading of 12 mg protein/g glucan, ASS-CS achieved 88.8% glucose and 80.6% xylose yield. Characterization analysis reveals that lignin underwent sulfonation during ASS pretreatment. This modification results in a more negative zeta potential for ASS-CS, indicating a reduction in nonproductive adsorption between lignin and cellulase through increased electrostatic repulsion.

3.
Biotechnol Adv ; 72: 108339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38508427

RESUMO

As a sustainable and renewable alternative to petroleum fuels, advanced biofuels shoulder the responsibility of energy saving, emission reduction and environmental protection. Traditional engineering of cell factories for production of advanced biofuels lacks efficient high-throughput screening tools and regulating systems, impeding the improvement of cellular productivity and yield. Transcription factor-based biosensors have been widely applied to monitor and regulate microbial cell factory products due to the advantages of fast detection and in-situ screening. This review updates the design and application of transcription factor-based biosensors tailored for advanced biofuels and related intermediates. The construction and genetic parts selection principle of biosensors are discussed. Strategies to enhance the performance of biosensor, including regulating promoter strength and RBS strength, optimizing plasmid copy number, implementing genetic amplifier, and modulating the structure of transcription factor, have also been summarized. We further review the application of biosensors in high-throughput screening of new metabolic engineering targets, evolution engineering, confirmation of protein function, and dynamic regulation of metabolic flux for higher production of advanced biofuels. At last, we discuss the current limitations and future trends of transcription factor-based biosensors.


Assuntos
Técnicas Biossensoriais , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Biocombustíveis , Engenharia Metabólica , Regulação da Expressão Gênica
4.
J Biotechnol ; 367: 42-52, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36965629

RESUMO

Microbial tolerance to lignocellulose-derived inhibitors, such as aromatic acids, is critical for the economical production of biofuels and biochemicals. Here, adaptive laboratory evolution was applied to improve the tolerance of Yarrowia lipolytica to a representative aromatic acid inhibitor vanillic acid. The transcriptome profiling of evolved strain suggested that the tolerance could be related to the up-regulation of RNA processing and multidrug transporting pathways. Further analysis by reverse engineering confirmed that the amplification of YALI0_F13475g coding for transcriptional coactivator and YALI0_E25201g coding for multidrug transporter conferred tolerance not only to vanillic acid but also towards ferulic acid, p-coumaric acid, p-hydroxybenzoic acid and syringic acid. These findings suggested that regulation of RNA processing and multidrug transporting pathways may be important for enhanced aromatic acid tolerance in Y. lipolytica. This study provides valuable genetic information for robust strain construction for lignocellulosic biorefinery.


Assuntos
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Ácido Vanílico/farmacologia , Ácido Vanílico/metabolismo , Engenharia Metabólica
5.
BMC Med Imaging ; 22(1): 200, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401188

RESUMO

BACKGROUND: Iron overload plays a critical role in the pathogenesis of diabetic nephropathy. Non-invasive evaluation of renal iron overload in diabetes in the management and intervention of diabetic nephropathy is of great significance. This study aimed to explore the feasibility of blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) in evaluating renal iron overload in diabetes using a rabbit model. METHODS: The rabbits were randomly divided into control, iron-overload (I), diabetes (D), and diabetes with iron-overload (DI) groups (each n = 19). The diabetes models were generated by injecting intravenous alloxan solution, and the iron-overload models were generated by injecting intramuscular iron-dextran. BOLD MRI was performed immediately (week 0) and at week 4, 8, and 12 following modeling. The differences in renal cortex (CR2*) and outer medulla R2* (MR2*) and the ratio of MR2*-CR2* (MCR) across the different time points were compared. RESULTS: Iron was first deposited in glomeruli in the I group and in proximal tubular cells in renal cortex in the D group. In the DI group, there was iron deposition in both glomeruli and proximal tubular cells at week 4, and the accumulation increased subsequently. The degree of kidney injury and iron overload was more severe in the DI group than those in the I and D groups at week 12. At week 8 and 12, the CR2* and MR2* in the DI group were higher than those in the I and D groups (all P < 0.05). The MCR in the I, D, and DI groups decreased from week 0 to 4 (all P < 0.001), and that in the I group increased from week 8 to 12 (P = 0.034). CR2* and MR2* values displayed different trends from week 0-12. Dynamic MCR curves in the D and DI groups were different from that in the I group. CONCLUSION: It presents interactions between diabetes and iron overload in kidney injury, and BOLD MRI can be used to evaluate renal iron overload in diabetes.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Sobrecarga de Ferro , Animais , Coelhos , Diabetes Mellitus/patologia , Nefropatias Diabéticas/diagnóstico por imagem , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/diagnóstico por imagem , Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Saturação de Oxigênio
6.
Bioresour Technol ; 361: 127624, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35872269

RESUMO

The sugar utilization efficiency and the tolerance of microorganism to inhibitors are essential for lipid production from lignocellulosic biomass. In this study, the sugar consumption and inhibitor tolerance characteristics of Trichosporon dermatis 32,903 were investigated. The results showed that the lipid yield on xylose was much lower than that on glucose, while these substrates exhibited comparative efficiency for cell growth. High inoculum size improved the tolerance of T. dermatis 32,903 to inhibitors. Based on these characteristics, sugar-targeted-utilization and cyclic fermentation strategy was developed. The tolerance of high inoculum size to inhibitors was utilized, glucose was targeted for lipid fermentation and xylose was targeted for cell growth. As a result, the lipid production efficiency was greatly enhanced. The lipid titer in hydrolysate of DLCA (Densifying Lignocellulosic biomass with Chemicals followed by Autoclave) pretreated rice straw was improved to as high as 38.4 g/L with lipid yield of 0.207 g/g consumed sugar.


Assuntos
Carboidratos , Xilose , Fermentação , Glucose , Lignina , Lipídeos/química , Açúcares
7.
Neurotox Res ; 40(1): 267-275, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34981455

RESUMO

Disruption of the blood-brain barrier (BBB) is an important hallmark of sepsis-associated encephalopathy (SAE). Selegiline, a selective and irreversible inhibitor of monoamine oxidase type B, has been applied for the treatment of nervous disorders. In this study, we aimed to investigate whether selegiline has a protective capacity in the impairment of the BBB in both in vivo and in vitro experiments. In a sepsis mouse model, administration of selegiline ameliorated lipopolysaccharide (LPS)-induced impairment of BBB integrity. Additionally, treatment with selegiline increased the expression of the tight junction protein junctional adhesion molecule A (JAM-A) against LPS. Also, we found that selegiline inhibited the production of the proinflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1ß. In an in vitro experimental model, bEnd.3 brain endothelial cells were exposed to LPS. Results indicate that stimulation with LPS significantly increased the permeability of bEnd.3 cells and reduced the expression of JAM-A, both of which were rescued by treatment with selegiline. Additionally, selegiline prevented the activation of the NF-κB/MLCK/p-MLC signaling pathway in LPS-challenged bEnd.3 cells. These results indicate that selegiline exerted a protective effect on BBB dysfunction, which might be attributed to the inhibition of the NF-κB/MLCK/p-MLC signaling pathway. These findings provide a basis for further research into the neuroprotective mechanism of selegiline.


Assuntos
Lipopolissacarídeos , NF-kappa B , Animais , Barreira Hematoencefálica , Células Endoteliais , Lipopolissacarídeos/toxicidade , Camundongos , NF-kappa B/metabolismo , Selegilina/metabolismo , Selegilina/farmacologia , Transdução de Sinais
8.
Magn Reson Med Sci ; 21(3): 415-424, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33642470

RESUMO

PURPOSE: To explore the feasibility of susceptibility-weighted imaging (SWI) for evaluating renal iron overload. METHODS: Twenty-eight rabbits were randomly assigned into control (n = 14) and iron (n = 14) group. In the 0th week, the study group was injected with iron dextran. Both groups underwent SWI examination at the 0th, 8th, and 12th week. The signal intensity (SI) of cortex and medulla was assessed. Angle radian value (ARV) calculated with phase image was taken as the quantitative value for cortical and medullary iron deposition. After the 12th week, the left kidneys of rabbits were removed for pathology. The difference in the ARV among three groups was analyzed using Kruskal-Wallis test. The difference of the iron content between two groups was analyzed through independent sample t-test. RESULTS: In the iron group: at the 12th week, eight rabbits were found to have decreased SI of only cortex, and the other six rabbits had decreased SI of cortex and medulla by the same degree; the ARV of cortex at the 8th and 12th week was significantly higher than that of the 0th week (P < 0.05); the ARV of the six rabbits' medulla at the 12th week was significantly higher than that of the 0th week, 8th week, and the other eight rabbits at the 12th week (P < 0.05); at the 12th week, eight rabbits (iron group) were found to have many irons only deposit in the cortex, and the others were found to have many irons deposit in both cortex and medulla; the iron content of cortex and six rabbits' medulla in the iron group was significantly higher than that of the control (P < 0.05). CONCLUSION: The ARV of SWI can be used to quantitatively assess the excess iron deposition in the kidneys. Excessive iron deposition mainly occurs in the cortex or medulla and causes their SWI SI to decrease.


Assuntos
Sobrecarga de Ferro , Rim , Animais , Ferro , Sobrecarga de Ferro/diagnóstico por imagem , Sobrecarga de Ferro/patologia , Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Projetos Piloto , Coelhos
9.
J Sci Food Agric ; 101(2): 693-702, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32700446

RESUMO

BACKGROUND: This study developed a feasible catalytic method for d-allulose syrup production using a fusion enzyme, either in free or immobilized form, through hydrolysis of inulin extracted from Jerusalem artichoke tubers. RESULTS: d-Allulose 3-epimerase (DAE) was actively expressed in secretory form by fusing with the extracellular exo-inulinase CSCA in Escherichia coli BL21 (DE3). The best linker ligating the two enzymes was a flexible peptide containing 12 residues (GSAGSAAGSGEF). At 55 °C and pH 8.0, and as with the addition of 1 mmol L-1 Mn2+ , the CSCA-linkerE-DAE fusion enzyme obtained through high cell-density cultivation displayed a maximal exo-inulinase activity of 21.8 U mg-1 and resulted in a yield of 6.3 g L-1 d-allulose and 39.2 g L-1 d-fructose using 60 g L-1 inulin as the raw material. Catechol-modified alginate with titanium ions (Alg(Ti)PDA) was found to be a promising immobilization material for the fusion enzyme. After conversion for 8 days, the Alg(Ti)PDA-immobilized CSCA-linkerE-DAE (8 U g-1 ) completed 24 reaction cycles and retained over 80% of its original activity. Each reaction obtained an average of 19.8 g L-1 d-allulose and 32.7 g L-1 D-fructose from 60 g L-1 inulin. CONCLUSION: This study shed light on a feasible and cost-effective approach for the production of syrup containing d-allulose and D-fructose with inulin as the raw material via the use of a CSCA and DAE fusion enzyme. This syrup is of added value as a functional sweetener. © 2020 Society of Chemical Industry.


Assuntos
Frutose/química , Glicosídeo Hidrolases/química , Inulina/química , Racemases e Epimerases/química , Proteínas Recombinantes de Fusão/química , Biocatálise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Tecnologia de Alimentos/economia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Inulina/genética , Inulina/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
10.
ACS Synth Biol ; 9(9): 2450-2459, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32794764

RESUMO

Poly-γ-glutamic acid (γ-PGA) is a decomposable polymer and has been useful in various industries. The biological functions of γ-PGA are closely linked with its molecular weight (MW). In this study, we established an efficient method to produce variable MWs of γ-PGA from renewable biomass (Jerusalem artichoke) by Bacillus amyloliquefaciens. First, a systematic engineering strategy was proposed in B. amyloliquefaciens to construct an optimal platform for γ-PGA overproduction, in which 24.95 g/L γ-PGA generation was attained. Second, 27.12 g/L γ-PGA with an MW of 20-30 kDa was obtained by introducing a γ-PGA hydrolase (pgdS) into the platform strain constructed above, which reveals a potential correlation between the expression level of pgdS and MW of γ-PGA. Then, a Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) system was further designed to regulate pgdS expression levels, resulting in γ-PGA with variable MWs. Finally, a combinatorial approach based on three sgRNAs with different repression efficiencies was developed to achieve the dynamic regulation of pgdS and obtain tailor-made γ-PGA production in the MW range of 50-1400 kDa in one strain. This study illustrates a promising approach for the sustainable making of biopolymers with diverse molecular weights in one strain through the controllable expression of hydrolase using the CRISPRi system.


Assuntos
Bacillus amyloliquefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Hidrolases/metabolismo , Ácido Poliglutâmico/análogos & derivados , Proteínas de Bactérias/genética , Biomassa , Hidrolases/genética , Engenharia Metabólica , Peso Molecular , Ácido Poliglutâmico/biossíntese , Ácido Poliglutâmico/química
11.
ACS Synth Biol ; 9(6): 1395-1405, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32353226

RESUMO

Low-molecular-weight poly-γ-glutamic acid (LMW-γ-PGA) has attracted much attention because of its many potential applications in food, agriculture, medicine, and cosmetics. Enzymatic degradation is an efficient way for the synthesis of LMW-γ-PGA. However, the stereochemistry of γ-PGA limits the degradation of γ-PGA. This study identifies the role of γ-PGA synthase (pgsA) and glutamate racemase (racE) in the regulation of γ-PGA stereochemistry and demonstrates their combinational use for LMW-γ-PGA synthesis. First, the expression of pgsA and racE was enhanced, leading to improvements both in the molecular weight (Mw) and the d-glutamate proportion of γ-PGA. Then, an optimal combination of pgsA, racE, and γ-PGA hydrolase pgdS was constructed by exchanging the gene origins for the synthesis of LMW-γ-PGA. Finally, the Mw of γ-PGA was decreased to 6-8 kDa, which was much lower compared with the case without stereochemistry switching (20-30 kDa). This study provides a novel strategy to control the Mw of γ-PGA based on stereochemistry regulation and lays a solid foundation for synthesis of LMW-γ-PGA.


Assuntos
Bacillus amyloliquefaciens/metabolismo , Ácido Poliglutâmico/análogos & derivados , Isomerases de Aminoácido/genética , Isomerases de Aminoácido/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Cromatografia Líquida de Alta Pressão , Peso Molecular , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Ácido Poliglutâmico/análise , Ácido Poliglutâmico/biossíntese , Ácido Poliglutâmico/química , Espectrofotometria , Estereoisomerismo
12.
Bioprocess Biosyst Eng ; 42(10): 1711-1720, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31286217

RESUMO

To excavate the application of Jerusalem artichoke on poly(γ-glutamic acid) (γ-PGA) production, a γ-PGA producing strain Bacillus amyloliquefaciens NX-2S154 was obtained through atmospheric and room temperature plasma mutagenesis, which produced 14.83 ± 0.31 g/L of γ-PGA in batch fermentation with raw inulin extract. Simultaneous saccharification and fermentation (SSF) by adding commercial inulinase were further investigated for γ-PGA fermentation. Results showed SSF could eliminate the ineffective utilization of inulin while avoiding inhibition effect of high concentration substrate, which made γ-PGA concentration reach 18.54 ± 0.39 g/L with the process being shortened by 17%. Finally, an immobilized column for reducing inulinase cost was introduced to γ-PGA production. Repeated batch cultures showed the novel bioreactor exhibited higher stability and simplicity and gave average γ-PGA concentration and productivity of 19.40 ± 0.37 g/L and 0.27 ± 0.008 g/L/h, respectively. This work proposes a productive method for efficient γ-PGA production using Jerusalem artichoke feedstock.


Assuntos
Bacillus amyloliquefaciens/crescimento & desenvolvimento , Inulina/metabolismo , Ácido Poliglutâmico/biossíntese , Bacillus amyloliquefaciens/genética , Mutagênese , Gases em Plasma , Ácido Poliglutâmico/genética
13.
Biotechnol Biofuels ; 12: 145, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31210783

RESUMO

BACKGROUND: Bacillus amyloliquefaciens NB is a newly discovered strain, which produces poly-(γ-glutamic acid) (γ-PGA) from raw extracted inulin of Jerusalem artichoke tubers; however, the underlying mechanisms remain unknown. To address this problem, we identified the inulin hydrolase in wild-type strain B. amyloliquefaciens NB. RESULTS: The novel inulin hydrolase (CscA) was discovered from strain NB, with high inulinase activity (987.0 U/mg at 55 °C) and strong resistance at pH values between 8.0 and 11.0, suggesting the potential application of CscA in Jerusalem artichoke biorefinery. CscA exhibited a k cat/K m of (6.93 ± 0.27) × 103 for inulin; its enzymatic activity was stimulated by metal ions, like K+, Mn2+, or Ca2+. Similar to their role in glycoside hydrolase 32 family enzymes, the conserved Asp37, Asp161, and Glu215 residues of CscA contribute to its catalytic activity. Targeted disruption of CscA gene suppressed inulin utilization by strain NB. Overexpression of CscA significantly enhanced the γ-PGA generation by 19.2% through enhancement in inulin consumption. CONCLUSIONS: The inulin hydrolase CscA is critical for inulin metabolism in B. amyloliquefaciens and indicates potential application in Jerusalem artichoke biorefinery.

14.
J Agric Food Chem ; 67(22): 6263-6274, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31088055

RESUMO

The development of commercial poly-γ-glutamic acid (γ-PGA) production by glutamate-dependent strains requires understanding the glutamate dependence mechanism in the strains. Here, we first systematically analyzed the response pattern of Bacillus subtilis to glutamate addition by comparative transcriptomics. Glutamate addition induced great changes in intracellular metabolite concentrations and significantly upregulated genes involved in the central metabolic pathways. Subsequent gene overexpression experiments revealed that only the enhancement of glutamate synthesis pathway successfully led to γ-PGA accumulation without glutamate addition, indicating the key role of intracellular glutamate for γ-PGA synthesis in glutamate-dependent strains. Finally, by a combination of metabolic engineering targets, the γ-PGA titer reached 10.21 ± 0.42 g/L without glutamate addition. Exogenous glutamate further enhanced the γ-PGA yield (35.52 ± 0.26 g/L) and productivity (0.74 g/(L h)) in shake-flask fermentation. This work provides insights into the glutamate dependence mechanism in B. subtilis and reveals potential molecular targets for increasing economical γ-PGA production.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Ácido Glutâmico/metabolismo , Ácido Poliglutâmico/análogos & derivados , Proteínas de Bactérias/metabolismo , Meios de Cultura/metabolismo , Perfilação da Expressão Gênica , Ácido Poliglutâmico/biossíntese
15.
J Agric Food Chem ; 67(13): 3711-3722, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30866628

RESUMO

Bacillus amyloliquefaciens NX-2S154 is a promising poly(γ-glutamic acid) (γ-PGA) producing strain discovered in previous studies. However, the wild-type strain contains an unknown endogenous plasmid, p2Sip, which causes low transformation efficiency and instability of exogenous plasmids. In our study, p2Sip is 5622 bp with 41% G+C content and contains four putative open reading frames (ORFs), including genes repB, hsp, and mobB and γ-PGA-synthesis regulator, pgsR. Elimination of p2Sip from strain NX-2S154 delayed γ-PGA secretion and decreased production of γ-PGA by 18.1%. Integration of a pgsR expression element into the genomic BamHI locus using marker-free manipulation based on pheS* increased the γ-PGA titer by 8%. pgsR overexpression upregulated the expression of γ-PGA synthase pgsB, regulator degQ, and glutamic acid synthase gltA, thus increasing the γ-PGA production in B. amyloliquefaciens NB. Our results indicated that pgsR from p2Sip plays an important regulatory role in γ-PGA synthesis in B. amyloliquefaciens.


Assuntos
Bacillus amyloliquefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Plasmídeos/genética , Ácido Poliglutâmico/análogos & derivados , Bacillus amyloliquefaciens/genética , Proteínas de Bactérias/genética , Vias Biossintéticas , Plasmídeos/metabolismo , Ácido Poliglutâmico/metabolismo
16.
J Agric Food Chem ; 67(1): 282-290, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30543111

RESUMO

Low-molecular-weight poly-γ-glutamic acid (LMW-γ-PGA) has attracted much attention owing to its great potential in food, agriculture, medicine, and cosmetics. Current methods of LMW-γ-PGA production, including enzymatic hydrolysis, are associated with low operational stability. Here, an efficient method for stable biosynthesis of LMW-γ-PGA was conceived by overexpression of γ-PGA hydrolase in Bacillus amyloliquefaciens NB. To establish stable expression of γ-PGA hydrolase (PgdS) during fermentation, a novel plasmid pNX01 was constructed with a native replicon from endogenous plasmid p2Sip, showing a loss rate of 4% after 100 consecutive passages. Subsequently, this plasmid was applied in a screen of high activity PgdS hydrolase, leading to substantial improvements to γ-PGA titer with concomitant decrease in the molecular weight. Finally, a satisfactory yield of 17.62 ± 0.38 g/L LMW-γ-PGA with a weight-average molecular weight of 20-30 kDa was achieved by direct fermentation of Jerusalem artichoke tuber extract. Our study presents a potential method for commercial production of LMW-γ-PGA.


Assuntos
Bacillus amyloliquefaciens/metabolismo , Proteínas de Bactérias/genética , Hidrolases/metabolismo , Ácido Poliglutâmico/análogos & derivados , Bacillus/enzimologia , Bacillus/genética , Bacillus amyloliquefaciens/genética , Proteínas de Bactérias/metabolismo , Fermentação , Hidrolases/genética , Engenharia Metabólica , Peso Molecular , Plasmídeos/genética , Plasmídeos/metabolismo , Ácido Poliglutâmico/biossíntese , Ácido Poliglutâmico/química
17.
Biotechnol Biofuels ; 11: 151, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881456

RESUMO

The Jerusalem artichoke is a perennial plant that belongs to the sunflower family. As a non-grain crop, Jerusalem artichoke possesses a number of desirable characteristics that make it a valuable feedstock for biorefinery, such as inulin content, rapid growth, strong adaptability, and high yields. This review provides a comprehensive introduction to renewable Jerusalem artichoke-based biomass resources and recent advances in bio-based product conversion. Furthermore, we discuss the latest in the development of inulinase-producing microorganisms and enhanced inulin hydrolysis capacity of microbes by genetic engineering, which lead to a more cost-effective Jerusalem artichoke biorefinery. The review is aimed at promoting Jerusalem artichoke industry and new prospects for higher value-added production.

18.
Bioresour Technol ; 239: 197-203, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28521229

RESUMO

This study aimed to develop non-food fermentation for the cost-effective production of poly-(γ-glutamic acid) (γ-PGA) using a novel strain of Bacillus amyloliquefaciens NX-2S. The new isolate assimilated inulin more efficiently than other carbohydrates from Jerusalem artichoke, without hydrolytic treatment. To investigate the effect of inulin on γ-PGA production, the transcript levels of γ-PGA synthetase genes (pgsB, pgsC, pgsA), regulatory genes (comA, degQ, degS), and the glutamic acid biosynthesis gene (glnA) were analyzed; inulin addition upregulated these key genes. Without exogenous glutamate, strain NX-2S could produce 6.85±0.22g/L of γ-PGA during fermentation. Exogenous glutamate greatly enhances the γ-PGA yield (39.4±0.38g/L) and productivity (0.43±0.05g/L/h) in batch fermentation. Our study revealed a potential method of non-food fermentation to produce high-value products.


Assuntos
Ácido Glutâmico , Helianthus , Bacillus , Bacillus amyloliquefaciens , Fermentação , Ácido Poliglutâmico/análogos & derivados
19.
Appl Microbiol Biotechnol ; 100(21): 9003-9011, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27664159

RESUMO

L-Ribose is a synthetic L-form monosaccharide. It is a building block of many novel nucleotide analog anti-viral drugs. Bio-production of L-ribose relies on a two-step reaction: (i) conversion of L-arabinose to L-ribulose by the catalytic action of L-arabinose isomerase (L-AI) and (ii) conversion of L-ribulose to L-ribose by the catalytic action of L-ribose isomerase (L-RI, EC 5.3.1.B3) or mannose-6-phosphate isomerase (MPI, EC 5.3.1.8, alternately named as phosphomannose isomerase). Between the two enzymes, L-RI is a rare enzyme that was discovered in 1996 by Professor Izumori's group, whereas MPI is an essential enzyme in metabolic pathways in humans and microorganisms. Recent studies have focused on their potentials for industrial production of L-ribose. This review summarizes the applications of L-RI and MPI for L-ribose production.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Manose-6-Fosfato Isomerase/metabolismo , Ribose/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA