Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6609, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857604

RESUMO

Calcium (Ca) can contribute to soil organic carbon (SOC) persistence by mediating physico-chemical interactions between organic compounds and minerals. Yet, Ca is also crucial for microbial adhesion, potentially affecting colonization of plant and mineral surfaces. The importance of Ca as a mediator of microbe-mineral-organic matter interactions and resulting SOC transformation has been largely overlooked. We incubated 44Ca labeled soils with 13C15N labeled leaf litter to study how Ca affects microbial transformation of litter and formation of mineral associated organic matter. Here we show that Ca additions promote hyphae-forming bacteria, which often specialize in colonizing surfaces, and increase incorporation of litter into microbial biomass and carbon use efficiency by approximately 45% each. Ca additions reduce cumulative CO2 production by 4%, while promoting associations between minerals and microbial byproducts of plant litter. These findings expand the role of Ca in SOC persistence from solely a driver of physico-chemical reactions to a mediator of coupled abiotic-biotic cycling of SOC.


Assuntos
Cálcio , Solo , Solo/química , Cálcio/metabolismo , Carbono/metabolismo , Microbiologia do Solo , Plantas/metabolismo , Minerais/química
2.
Water Res ; 188: 116571, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137528

RESUMO

Clay-polymer nanocomposites (CPNs) have been studied for two decades as sorbents for water pollutants, but their applicability remains limited. Our aim in this review is to present the latest progress in CPN research using a meta-analysis approach and identify key steps necessary to bridge the gap between basic research and CPN application. Based on results extracted from 99 research articles on CPNs and 8 review articles on other widely studies sorbents, CPNs had higher adsorption capacities for several inorganic and organic pollutant classes (including heavy metals, oxyanions, and dyes, n = 308 observations). We applied principal component analysis, analysis of variance, and multiple linear regressions to test how CPN and pollutant properties correlated with Langmuir adsorption model coefficients. While adsorption was, surprisingly, not influenced by mineral properties, it was influenced by CPN fabrication method, polymer functional groups, and pollutant properties. For example, among the pollutant classes, heavy metals had the highest adsorption capacity but the lowest adsorption affinity. On the other hand, dyes had high adsorption affinities, as reflected by the linear correlation between adsorption affinity and pollutant molecular weight. Scaling from 'basic research' to 'technological application' requires testing CPN performance in real water, application in columns, comparison to commercial sorbents, regeneration, and cost evaluation. However, our survey indicates that of the 158 observations, only 20 compared the CPN's performance to that of a commercial sorbent. We anticipate that this review will promote the design of smart and functional CPNs, which can then evolve into an effective water treatment technology.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Argila , Polímeros , Água , Poluentes Químicos da Água/análise
3.
Water Res ; 157: 454-462, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30981976

RESUMO

Functionalized polymer-clay composites were developed and characterized as engineered geomedia for trace contaminant removal during infiltration of urban runoff. Montmorillonite clays were functionalized with either poly(diallyldimethylammonium) chloride (PDADMAC) or poly(4-vinylpyridine-co-styrene) (PVPcoS) to enhance organic compound sorption using a simple, scalable synthesis method. Seven representative trace organic compounds and six trace metals were employed to assess the performance of the polymer-clay composites relative to biochar (i.e., an adsorbent proposed for similar purposes) in batch sorption and column studies under simulated stormwater conditions. Contaminant and geomedia electrostatic and hydrophobic interactions, and the presence of natural organic matter (NOM) affected sorption. In batch studies, polymer-clay composites exhibited similar performance to biochar for perfluoroalkyl substance removal, but had lower affinity for polar pesticides and tris(2-chloroethyl) phosphate. Oxyanion removal was greatest for positively-charged PDADMAC-clay composites (particularly Cr[VI]), while PVPcoS-clay composites removed over 95% of Ni, Cd, and Cu. NOM decreased removal of all organic compounds, but increased trace metal removal on clay composites due to sorption of NOM-complexed metals. Polymer-clay composite-amended columns best removed oxyanions, while biochar-amended columns exhibited superior removal for all trace organics. At 3 wt% geomedia-sand loading, clay composites exhibited significantly higher saturated hydraulic conductivity than biochar, which is advantageous when clogging is a concern or when rapid infiltration is needed. Under typical urban stormwater conditions, the clay composites will remove contaminants for at least 20-30 years before regeneration or replacement is needed.


Assuntos
Argila , Polímeros , Adsorção , Metais , Compostos Orgânicos , Dióxido de Silício
4.
ACS Appl Mater Interfaces ; 10(32): 27088-27097, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30036466

RESUMO

The greatest challenge of wastewater treatment is the removal of trace concentrations of persistent micropollutants in the presence of the high concentration of effluent organic matter (EfOM). Micropollutant removal by sorbents is a common practice, but sorbent employment is often limited because of fouling induced by EfOM and challenging sorbent regeneration. We directly addressed these two issues by designing regenerable dual-site composite sorbents based on polymerized ß-cyclodextrin, modified with a cationic group (pCD+) and adsorbed to montmorillonite (pCD+-MMT). This dual-site composite was tailored to simultaneously target an emerging micropollutant, bisphenol A (BPA), through inclusion in ß-cyclodextrin cavities and target anionic EfOM compounds, through electrostatic interactions. The removal of BPA from treated wastewater by the composite was not compromised despite the high removal of EfOM. The composites outperformed many recently reported sorbents. Differences in composite performance was discussed in terms of their structures, as characterized with TGA, XRD, BET and SEM. The simultaneous filtration of BPA and EfOM from wastewater by pCD+-MMT columns was demonstrated. Furthermore, successful in-column regeneration was obtained by selectively eluting EfOM and BPA, with brine and alkaline solutions, respectively. Finally, the composites removed trace concentrations of numerous high priority micropollutants from treated wastewater more efficiently than commercial activated carbon. This study highlights the potential to design novel dual-site composites as selective and regenerable sorbents for advanced wastewater treatment.

5.
J Hazard Mater ; 335: 135-142, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28437697

RESUMO

It is well established that organophosphate pesticides, such as diazinon, pose environmental and health risks. Diazinon is prone to rapid acidic hydrolysis, forming the less toxic compound 2-isopropyl-6-methyl-4-pyrimidinol (IMP). In this study, diazinon surface catalyzed hydrolysis was achieved by its adsorption to a composite, based on protonated poly (4-vinyl-pyridine-co-styrene) (HPVPcoS) and montmorillonite (MMT) clay. The adsorption affinity and kinetics of diazinon to HPVPcoS-MMT were significantly higher than those obtained to the deprotonated PVPcoS-MMT, emphasizing the importance of hydrogen bonding. Correspondingly, diazinon filtration by HPVPcoS-MMT columns was highly efficient (100% for 100 pore volumes), while filtration by columns of PVPcoS-MMT or granular activated carbon (GAC) reached only 55% and 85%, respectively. Regeneration of HPVPcoS-MMT by pH increase was demonstrated and sorbent reuse was successful, whereas regeneration and reuse of GAC and PVPcoS-MMT were inefficient. Proton transfer from HPVPcos-MMT to diazinon, investigated by FTIR analysis, supports the suggested mechanism of surface catalyzed hydrolysis. These findings demonstrate the applicability of such bi-functional sorbents, to adsorb and degrade pollutants, for efficient water treatment.

6.
Environ Sci Technol ; 50(15): 8246-54, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27397603

RESUMO

Hybrid polycation-clay composites, based on methylated poly vinylpyridinium, were optimized as sorbents for secondary effluent organic matter (EfOM) including emerging micropollutants. Composite structure was tuned by solution ionic strength and characterized by zeta potential, FTIR, X-ray diffraction, and thermal gravimetric analyses. An increase in ionic strength induced a transition from a train to a loops and tails configuration, accompanied by greater polycation adsorption. Composite charge reversal (zeta potential -18 to 45 mV) increased the adsorption of EfOM and humic acid (HA), moderately and sharply, respectively, suggesting electrostatic and also nonspecific interactions with EfOM. Filtration of EfOM by columns of positively charged composites was superior to that of granular activated carbon (GAC). The overall removal of EfOM was most efficient by the composite with a train configuration. Whereas a composite with a loops and tails configuration was beneficial for the removal of the anionic micropollutants diclofenac, gemfibrozil and ibuprofen from EfOM. These new findings suggest that the loops and tails may offer unique binding sites for small micropollutants which are overseen by the bulk EfOM. Furthermore, they may explain our previous observations that in the presence of dissolved organic matter, micropollutant filtration by GAC columns was reduced, while their filtration by composite columns remained high.


Assuntos
Carvão Vegetal/química , Filtração , Adsorção , Preparações Farmacêuticas , Eliminação de Resíduos Líquidos , Purificação da Água , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA