Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(9): 6085-6099, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38648720

RESUMO

Herein, we disclose a facile synthetic strategy to access an important class of drug molecules that contain chiral 1,2-amino alcohol functionality utilizing highly effective ruthenium-catalyzed asymmetric transfer hydrogenation of unprotected α-ketoamines. Recently, the COVID-19 pandemic has caused a crisis of shortage of many important drugs, especially norepinephrine and epinephrine, for the treatment of anaphylaxis and hypotension because of the increased demand. Unfortunately, the existing technologies are not fulfilling the worldwide requirement due to the existing lengthy synthetic protocols that require additional protection and deprotection steps. We identified a facile synthetic protocol via a highly enantioselective one-step process for epinephrine and a two-step process for norepinephrine starting from unprotected α-ketoamines 1b and 1a, respectively. This newly developed enantioselective ruthenium-catalyzed asymmetric transfer hydrogenation was extended to the synthesis of many 1,2-amino alcohol-containing drug molecules such as phenylephrine, denopamine, norbudrine, and levisoprenaline, with enantioselectivities of >99% ee and high isolated yields.


Assuntos
Amino Álcoois , Rutênio , Hidrogenação , Catálise , Amino Álcoois/química , Amino Álcoois/síntese química , Rutênio/química , Estereoisomerismo , Estrutura Molecular , Aminas/química
2.
Org Lett ; 26(14): 2751-2757, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37486800

RESUMO

We report a new class of highly effective, benzooxaphosphole-based, water-soluble ligands in the application of Suzuki-Miyaura cross-coupling reactions for sterically hindered substrates in aqueous media. The catalytic activities of the coupling reactions were greatly enhanced by the addition of catalytic amounts of organic phase transfer reagents, such as tetraglyme and tetrabutylammonium bromide. The optimized general protocol can be conducted with a low catalyst load, thereby providing a practical solution for these reactions. The viability of this new Suzuki-Miyaura protocol was demonstrated with various substrates to generate important building blocks, including heterocycles, for the synthesis of biologically active compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA